
1

WebEye– Automated Collection of Malicious
HTTP Traffic

Johann Vierthaler, Roman Kruszelnicki, Julian Schütte
Fraunhofer Institute AISEC, Garching, Germany

F

Abstract—With malware detection techniques increasingly adopting
machine learning approaches, the creation of precise training sets
becomes more and more important. Large data sets of realistic web
traffic, correctly classified as benign or malicious are needed, not only
to train classic and deep learning algorithms, but also to serve as
evaluation benchmarks for existing malware detection products. Inter-
estingly, despite the vast number and versatility of threats a user may
encounter when browsing the web, actual malicious content is often hard
to come by, since prerequisites such as browser and operating system
type and version must be met in order to receive the payload from
a malware distributing server. In combination with privacy constraints
on data sets of actual user traffic, it is difficult for researchers and
product developers to evaluate anti-malware solutions against large-
scale data sets of realistic web traffic. In this paper we present WebEye,
a framework that autonomously creates realistic HTTP traffic, enriches
recorded traffic with additional information, and classifies records as
malicious or benign, using different classifiers. We are using WebEye to
collect malicious HTML and JavaScript and show how datasets created
with WebEye can be used to train machine learning based malware
detection algorithms. We regard WebEye and the data sets it creates as
a tool for researchers and product developers to evaluate and improve
their AI-based anti-malware solutions against large-scale benchmarks.

1 INTRODUCTION

The web is not only the largest pool of knowledge, entertain-
ment, and cultural exchange of the planet, but also one of the
most versatile attack vectors and in many cases one of the
few unfiltered communication channels between enterprise
networks and the Internet. With the advent of HTML 5
technologies such as local storage or web sockets, the client
side plays an increasing role in modern web applications.
Work load and logic is shifted from the web server to the
browser and in many cases, the server side is reduced to a
REST API while model, view, and controller of the actual
application are delivered as JavaScript code to the client.

From the security perspective, the advent of web frame-
works following this design pattern (e.g., Angular, Mous-
tache, etc.) is favorable in general, as it reduces the at-
tack surface at the server side. However, with browsers
becoming more capable and JavaScript code bases executed
by them larger and more complex, attacks in the opposite
direction become more attractive: as HTTP and especially
HTTPS is one of the main direct communication channels
between clients in internal enterprise networks and servers
in the public Internet, it becomes an attractive vector to
deploy attacks against the client or even to use the client

to launch attacks against enterprise networks. Examples are
JavaScript-based port scanners, cross-site request forgery
(CSRF) attacks or attempts to uniquely identify users across
browsers and devices [15]. Attack frameworks like BeEF [1]
illustrate the almost unlimited possibilities available to an
attacker, once the client’s web browser is ”hooked”.

One approach to counteract such attacks to the client side
launched by malicious web servers is to inspect and classify
traffic either in trusted proxies or directly in the browser.
While traditional approaches attempt to detect pattern-
based signatures in traffic, classic machine learning (ML)
and deep learning techniques play an increasing role in
classifying traffic to detect obfuscated or polymorphic mal-
ware and previously unknown attack vectors. To develop
and evaluate such ML based attack detection techniques, it
is mandatory to have large data sets of realistic web traffic
with correct labeling of benign and malicious traffic. With-
out such data sets, vendor claims with respect to the quality
of their malware detection solutions cannot be assessed and
compared in an unbiased way and developers of ML based
attack detection tools have no benchmark to evaluate their
algorithm against. This is of special importance for deep
learning approaches, where the quality of a neural network
cannot be adequately assessed a priori.

However, the generation of high quality web traffic data
sets is not trivial. First, actual traffic from real users is
hardly available with the exception of few data sets (e.g.,
[11]) which are however extremely limited and biased, as
users need to consent to take part in a traffic collection
field test. Collecting web traffic from real users without their
consent is obviously not possible or desirable. The browser
history and form data submitted to web pages is regarded as
personal identifiable information (PII) and allows to create
detailed user profiles. For good reasons, the collection of
such information without the user’s consent and without
anonymization is prohibited in most jurisdictions. Thus, the
most promising approach is to generate realistic traffic by
simulating the behavior of individual users following links
and logging into web portals.

Another challenge is the labeling and feature extraction
of collected web traffic. To create training sets for machine
learning algorithms, data must be labeled as benign or
malicious a priori. While most ML algorithms tolerate errors
in the training set, any mislabeling decreases precision. It
is thus necessary to collect and aggregate ”verdicts” from

ar
X

iv
:1

80
2.

06
01

2v
1

 [
cs

.C
R

]
 1

6
Fe

b
20

18

2

different sources for each accessed page and to extract
features which are relevant for a training set but do not lead
to overfitting.

In this paper, we address these challenges by introducing
WebEye, a framework to generate web traffic data sets for
training malware detection solutions. While WebEye is de-
signed to create datasets, it can also be used in a continuous
learning mode for adaptive anomaly detection systems. We
introduce the main components of WebEye and illustrate
how ML based algorithms can be integrated for the creation
of initial labeling verdicts, as well as their accuracy can be
assessed a posteriori by evaluating against the created data
set as a benchmark.

In section 2, we review work related to ours that influ-
enced the creation of the framework and discuss how it
differs from our approach. Section 3 introduces our over-
all approach and its capabilities and limitations. The next
section outlines the overall technical setup that was used
for creating and testing this framework and gives detailed
descriptions of the individual components the framework
consists of. Section 4 explains how the framework was
used for the creation of a dataset and the specific setup,
performance, experiences and steps for accessing the dataset
are discussed there. Finally, the conclusion generally sum-
marizes the framework and its capabilities, but also its
limitations. Furthermore an outlook on the potential fields
of applications for this frameworks is given.

2 RELATED WORK

Work related to ours in concerned with the creation of
datasets of web traffic suited for training and evaluation
of malware detection solutions. For obvious reasons, the
amount of publicly available datasets of real-world user
browsing behavior is scarce. Justified data privacy and
secrecy concerns forbid capturing and publishing traffic of
enterprises or even of major Internet nodes.

Most similar to our work is the HTTP Dataset CSIC [12],
an automatically generated dataset of web traffic, including
normal and malicious traffic. Similar to us, the authors in-
tent to use this dataset for training and evaluation of attack
detection mechanisms, but there are also notable differences:
first, the CSIC dataset includes only requests to a single
(artificial) e-commerce application and thus only serves as a
training set for detecting client-side attacks against similar
types of web applications. We focus in contrast on the
detection of server-side attacks against the client and thus
need to include various web applications in the wild and
the content they deliver to a real-life user. Second, CSIC is
a pure dataset, but not a framework to generate such sets.
The generation methodology is not precisely defined and so
updating the CSIC is impossible. That fact that it is from
2010 makes it unsuited for training of newer HTTP 5 based
attacks. Finally, with 36,000 normal and 25,000 malicious
requests, the CSIC set is significantly smaller than training
sets typically required for training deep neuronal networks.

CTU-13 [11] is a 1.9 GB dataset of benign and botnet
traffic that was captured and manually labeled in the CTU
University, Czech Republic, in 2011. The dataset itself differs
from ours in that it has been collected passively across all
layers and does not reflect individual browsing behavior.

The methodology of manually labeling records is tedious
and thus potentially unreliable and does not scale to the
amount of data that we set out to create.

Different from our work are also pure malware data
sets referring to actual malware samples such as executable
files and their behavior. Such data sets are widely available,
such as the BIG 2015 data set hosted by Microsoft which
contains 500 GB malware samples [3], the Kharon dataset
of reverse engineered Android applications [14], Drebin –
another Android malware dataset –[16], [7], or malware
sample behavior such as the dataset of malware system calls
in [17].

2.1 Collection and Analysis
Canali et. al proposed with Prophiler [10] a machine learning
based filter for static upfront classification of malicious web
pages in order to collect and verify actual malware in a more
efficient manner. In order to train this classifier, various,
e.g., HTML and JavaScript based features are extracted from
benign and verified malicious contents.

2.2 Zozzle
Microsoft presented with Zozzle [9] a work, that focuses on
machine learning based detection of JavaScript malware.
The approach proposed in Zozzle is a Bayesian classifier,
which operates on ASTs generated from the JavaScript
source code. The resulting abstract syntax tree is then an-
alyzed if it consists of subtrees or leafs, that indicate the
presence of malware. In this work we also form an AST
out of given JavaScript code and use it as an approach
for simplifying feature extraction. However, our approach
differs from Zozzle, as we also include various HTML
features typically involved in malware when setting up the
feature vector. This allows us to detect malware, that does
not utilize JavaScript in its attacks. Additionally, instead of a
Bayesian classifier, we are using a RandomForest-Classifier,
as it delivered the overall best performance when compared
to other classifiers.

3 TRAFFIC COLLECTION FRAMEWORK

The framework was developed with the primary intention
of simulating realistic website browsing behavior with auto-
mated user agents in order to gather malicious HTML and
JavaScript files in a way that allows us to trace the various
stages of actual attacks on clients, e.g., bootstrapping and
exploitation. We classify the resulting contents with the help
of signature based detection methods (ClamAV), blacklists
(Google Safebrowsing) and machine learning.

3.1 Overall Concept/Architecture of WebEye
The abstract concept of the framework consists of 5 basic
components:

• Capturing Component/Sensor: The capturing com-
ponent must be able to record the traffic of one or
more user agents at the same time without severely
sacrificing responsiveness. After the full data for a
traffic flow has been acquired, the data record is then
forwarded to the next stage for further processing.

3

• Automated User Agent: The user agent automat-
ically interacts with different websites to generate
HTTP traffic to collect. Besides the generation of
data, the user agent should also be able to mimic
the browsing behavior of a real user – to some
extent – to create a more realistic traffic. For example
by attempting logins to web services, scrolling the
document and interacting with buttons and other
HTML UI elements.

• Data Augmentation Facilities: Collecting and de-
riving additional data provides us with a broader
knowledge about the subject. This knowledge can,
for example, be used in the development of ad-
ditional detectors, e.g., machine learning classifiers,
since the derived data may be used as a supporting
feature-set.

• Malware Detection Facilities: Detectors represent
the upfront classifiers, that are used to determine if
a HTTP-traffic flow carries malicious content. They
should fulfill the following requirements:

– Fast Processing: The detectors have to quickly
provide their verdicts in order to ensure re-
sponsiveness.

– Updatability: For reliable detection, the classi-
fiers should be up to date or should provide
the necessary update-functionalities.

• Storage Component: The storage component has to
fulfill two requirements:

– The database should be able to contain non ho-
mogeneous records, e.g., datasets of variable
structure. This means, that the storage unit
should also be able to provide a lookup func-
tionality, which allows us to query records for
fields, which are not present in other records.

– Storing/retrieving files and linking them to a
data record should be easily possible.

• User Agent Management: In order to have a good
control over the number and type of user agents
active in the system, a management component is
used. This component should be able to carry out
the steps necessary for creating, monitoring and
removing the active user agents.

Figure 1. Conceptual composition of WebEye

3.2 Implementation and Setup
This section provides a detailed description of the utilized
technologies and implementation. It should be noted, that
we are using virtual machines within an Openstack private
cloud environment to realize the components of WebEye.

3.2.1 Implementation: Capturing Component/Sensor
The capturing component consists of both, a ICAP-Server
for handling the data and a Squid Proxy Server, which
transports the data from the user agents to the ICAP-Server
and vice-versa.

3.2.1.1 ICAP-Server: An Internet Content Adaption
Protocol Server (ICAP-Server) component is the primary
component of our framework. This ICAP server is contacted
by the Squid Proxy for every HTTP request and response
initiated by the active user agents. It is primarily responsible
for recording, enriching and storing data resulting from
HTTP requests, responses and the corresponding bodies. To
enrich the data the ICAP server queries the implemented
detectors for malware determination and augments the ex-
isting data with the help of the employed data enrichment
facilities. The requests, responses, response-bodies, verdicts
and data augmentations are then stored in the data storage
component. Due to the characteristic of the ICAP protocol,
this component can also work as an enforcement module,
warning users about malicious content. Another reason for
choosing ICAP is the fact, that it is a standard way for HTTP
filtering, what simplifies deployment in existing networks.

3.2.1.2 Squid Proxy Server: The Squid proxy is the
sole client to the ICAP server within our framework. It con-
siderably simplifies HTTP traffic recordings, since the Squid
proxy is capable of the ICAP protocol and the client compo-
nents (3.2.2) only have to be configured to communicate via
the Squid instance. The proxy can also be configured to act
as a Man-in-the-Middle, which opens secured connections
(so called SSL Bump) and hence enables us to also analyze
and store otherwise encrypted traffic.

3.2.2 Implementation: Automated User Agent
This section describes the component of the framework,
which acts as a client towards a targeted website. It elab-

4

orates on the utilized technologies, sources of URLs and
implemented website interaction strategy.

3.2.2.1 Browser Automation with Selenium: One of
the earliest decisions in the development of the framework
concerned the user agent, which is responsible for com-
municating with the targeted websites. The decision was
against a static crawler, since many malware distributing
websites utilize evasive strategies and methods in order to
remain undetected by anti-malware companies and tech-
nologies [13]. For example, a bootstrapping website sets the
cookie via JavaScript to a specific value and only with this
cookie, the next request against the server will deliver the
malicious payload. Such evasive countermeasures nullifies
the reasons to use (faster) static crawlers. Therefore, we used
the browser automation framework Selenium to deploy and
control popular browsers (e.g., Chromium and Firefox). This
browser automation not only allows malware bootstrapping
procedures to take place, but also enables us to easily
simulate a basic user-website-interaction. Despite promising
a substantial boost in performance compared to Firefox
or Chromium, we decided against headless browsing, e.g.,
PhantomJS [5], due to them being discernible from popular
browsers, when fingerprinting it for certain objects, e.g.,
WebGL-Components.

The employment of the Selenium framework makes our
system browser-agnostic and allows for using any browser,
as long as it implements the WebDriver API, which most
popular browsers do. This also enables us to quickly inte-
grate new browsers in the future.

W̌ebsite Interaction Strategy To implement an approxi-
mately realistic user simulation, a certain website interaction
strategy has to be considered. Such a strategy enables us to
collect data more efficiently and also reduces the risks of
being deflected by evasive mechanisms of more elaborate
malware. One of the first considerations was to set the
screen size for the browsing window to a common value
(e.g., 1366 x 768), this contributes to the goal for letting
the user agent appear more like an actual person using a
browser. Another important decision was the integration of
Flash into the browsers. This enables us to record Flash
based exploits.

For the actual interaction itself, the selenium logic
”opens” a seed URL, waits for the page to load and then
scans the website for a possibility to log into the service.
If such a possibility is found, the user simulation queries
the web service BugMeNot [2] for publicly shared account
credentials for the specific website and then proceeds to fill
out the login form and sends it to the server. In case no
credentials are available, the selenium logic uses predefined
values. After a login attempt, the selenium script filters the
DOM for elements to interact with (e.g., clicking on links,
buttons and other inputs). This interaction continues until a
configured number of interactions is reached or the pipeline
of elements to interact with is depleted.

3.2.2.2 URL Seeders: As the user agent relies on
URLs to start crawling a website, a large source of URLs has
to be provided. A vast quantity of malicious or benign URLs
is important to build a reliable training set. For the frame-
work we utilized so called seeders that prepare sources of
domains, IP addresses and URLs for the user agents. Each
deployed user agent uses only one seeder.

For this paper we utilized 3 seeders, for which each had
a different focus for finding contents:

• Alexa 1 Million: The first seeder of the framework
provides a large quantity of URLs for largely benign
websites. Alexa 1 Million is a website ranking which
lists the top 1 million most popular websites. This
ranking of (mostly benign) websites results in a very
low probability of finding malicious contents. This is
important, since reliable predictive systems also need
to process benign contents correctly.

• MalwareDomainList: Due to the low probabil-
ity of finding malware with the Alexa 1 Mil-
lion seeder, an additional seeder was implemented,
which had the focus on malware related URLs. This
seeder uses the URLs provided by the web service
MalwareDomainList.com to deliver possibly ma-
licious URLs to the user agents.

• Openphish: This seeder specializes on phishing
websites, which may contain phishing schemes as
well as malicious content. This seeder primarily com-
plements the other seeders by providing URLs to
supposedly malicious and/or compromised servers.

Using specialized seeders instead of arbitrarily dialing
URLs considerably improved the probability of finding ma-
licious contents and with additional, different seeders more
malware could be collected within shorter time.

3.2.2.3 Monitoring and Maintenance: It is important
to (visually) monitor the behavior of the client component,
as it not only displays certain fault cases, but also enables
us to observe how malicious websites impact the browser
of our user agents. This observation is realized by using a
display via a XVNC backend, which enables us to (visually)
observe the browser window and the rendered contents
within it. Since the user agents are isolated in a fortified
subnet and a direct connection was not intended, we are
using port forwarding on the squid proxy machine to es-
tablish this connection. SSH access for maintenance/testing
was also implemented with port forwarding.

3.2.3 Implementation: Data Augmentation Facilities

In order to provide informative statistics about the col-
lected data, we integrated so called data augmentation
components, which fetch additional information from ex-
ternal sources or derive data or meta-data from the ana-
lyzed datasets. This enables us to find correlations between
datasets and may be used to strengthen the indications if a
content is malicious or not.

3.2.3.1 GeoIP: GeoIP enables us to determine meta-
data, e.g., the approximate location of a server by the
server’s host name or IP address. With the city level GeoIP
database this approximation is more detailed and allows
us to make statements, for example, about specific malware
related regions.

3.2.3.2 WhoIs: WhoIs provides meta-data about,
amongst others, the time of validity of a specific domain.
Malware domains are often registered for a rather short time
and therefore WhoIS can provide indications for malware
predictions.

5

3.2.3.3 HTML/JS Feature Extraction: In total we are
using 58 different features, which are used for determining
the maliciousness of a presented content. These features
are based on the Prophiler [10] paper as well as manual
evaluation of suspicious files. In the following list, five
example features are explained (all features are listed in
Table 4):

• Number of script strings in HTML or JavaScript
files: DOMs of malware websites are often cluttered
with JavaScript-nodes (script-tags in the raw HTML)
or malicious JavaScript scripts inject additional script
nodes into the DOM to carry out an attack.

• Shell code probability in strings: The probability
itself is based on the entropy each string in a script
possesses. The higher the entropy of a string is, the
higher the probability, that a string contains shell
code-like information. Shell codes are often used in,
e.g., heap spraying attack, which allow the attacker
to carry out harmful actions on the clients computer.
But the shell code probability might also indicate the
utilization of obfuscation or encoded images, since
blobs of characters might also resemble shell code.

• Number of eval strings: The JavaScript function
eval receives and executes a string of JavaScript
code. It should be noted that the use of eval is by it-
self not malicious, however, eval is a common pattern
in malware used, for instance for obfuscation or for
executing asynchronously loaded strings containing
JavaScript code.

• Number of Iframe strings: Malware websites have
a tendency to utilize one or more Iframes to carry out,
e.g., drive-by-attacks. Iframes are, similar to eval, a
common theme in malicious contents.

• Strings-to-Script-Ratio: Malware often tries to evade
signature based scanners by, e.g., embedding one or
more strings, which contain a harmful payload in an
obfuscated format, in a, for example, JavaScript file.
During runtime, this string is deobfuscated and ex-
ecuted, e.g., with eval. Depending on the payload,
this/these string/strings may represent the majority
content of the script.

Storing these features enables us to develop malware de-
tectors, which operate on this information and allows more
possibilities for data analysis. Additionally, these features
can be used to have an approximation on the design of
nowadays HTML/JavaScript malware.

3.2.4 Implementation: Malware Detection Facilities

This section elaborates on the detection components uti-
lized in this framework. These detectors are responsible for
detection and prediction of potentially harmful traffic. For
this framework, we rely on three different label sources to
determine if a certain record is malicious or not. These labels
can then be used to develop malware detection tools, e.g.,
machine learning based classifiers.

3.2.4.1 Label-Source: Google Safebrowsing: Google
offers a service to determine if the resource of a URL
is deemed malicious or not. Google Safebrowsing hereby
matches the URL – more specifically a hash prefix of an URL

– against a blacklist maintained by Google. A Safebrowsing-
query may result in five different results. These types are:

• Malware
• Social Engineering (e.g., phishing)
• Unwanted Software
• Potentially Harmful Applications
• Unspecified

3.2.4.2 Label-Source: ClamAV: ClamAV is a signa-
ture based anti virus engine, which we incorporated into
our collection framework to leverage an additional detector
to label malicious content. In order to keep the ClamAV
signatures up to date, we are utilizing the ClamAV signa-
ture update service Freshclam in regular intervals. We are
using the network socket of the ClamAV daemon clamd
for file scans and the subsequent report retrieval. Since the
framework stores the response bodies in the format the
server delivered it (compressed or uncompressed) to us,
we are decompressing the files (based on the headers in
response) before sending it to ClamAV. This helps us to
avoid false-negatives originating from ClamAV not being
able to fully evaluate certain compressed formats or chained
compressions.

3.2.4.3 Label-Source: Virustotal: Virustotal is a web
service for scanning URLs or files for malicious content
by using multiple anti virus engines. The main strength
of Virustotal is the utilization of more than 50 anti virus
engines to analyze a single file, which enables us to au-
tomate more accurate malware predictions. However, the
slow scanning speed and the public API request restrictions
(4 requests per minute) of Virustotal makes synchronous
report retrieval impractical for our use case. Therefore, the
Virustotal component only scans files, that were declared
as malware by at least one of the other detectors. Also,
the scanning itself follows an asynchronous approach. This
approach utilizes 4 status flags for a Virustotal report (un-
scanned, scan in progress, scan finished and error), which
are either set by the ICAP component or the Virustotal
component. For each request the ICAP sets the status flag
of the report to unscanned.

Concurrently, the Virustotal component uses two
threads:

• One thread queries the database for unscanned files
and proceeds to decompress the files (by using the
algorithms specified in the response headers) and
subsequently uploads those files to the Virustotal
service. After the upload, the status flag is set to scan
in progress and the Virustotal scan id is added to the
Virustotal field in the database. Any error changes
the flag to error (e.g., request exceeds the file size limit
of Virustotal).

• The other thread queries the database for files with
the scan in progress flag and retrieves the correspond-
ing report with the scan id. If a report could be
retrieved, the record is written into the database and
the status flag is set to scan finished.

3.2.5 Implementation: Storage Component
3.2.5.1 MongoDB and GridFS: For storing the

dataset a cluster of MongoDB shards is used that represents

6

the storage behind WebEye. It is responsible for storing data
of requests, responses, content, labels and other additional
data. Our current setup consists of five MongoDB shards,
but this can be scaled upwards or downwards, if needed.
A NoSQL Database was chosen because it offers a very
flexible way to store data that does not necessarily follow
a common schema, i.e., are not homogeneous in structure.
For example, the individual headers within the HTTP-
Requests and HTTP-Responses may vary in different fields,
e.g. header-fields for content-type or content-encoding. Data
of requests, responses, etc. are fitted into structured doc-
uments, that are then stored into the normal MongoDB
database while the content delivered by the response is
saved separately into GridFS. This separation is needed as
the content may vary heavily in size and may exceed the
BSON-document size limit of 16 MB [4]. In order to avoid
duplicate files in the GridFS, a SHA-1-Hash of the body is
calculated.

3.2.5.2 Data Exploration with Elasticsearch and
Kibana: During the evaluation of past datasets, we decided
that effective data exploration and visualization is not easily
achievable with MongoDB alone. Therefore, we incorpo-
rated Elasticsearch and Kibana for data exploration. This
exploration is made possible by exporting the MongoDB
datasets to Elasticsearch.

3.2.6 Implementation: User Agent Management
In order to control the user agents active in WebEye, a cen-
tral user agent management entity was required that is able
to create, tear down, monitor and reboot user agents. The
primary use cases for this management component are the
creation of different types of user agents and the restart of
user agents in case of lockups, e.g., due to websites opening
browser native dialogs (e.g., printing dialogs, alerts and
basic-authentication), slow loading times or browser restart
problems. This was realized by implementing a REST client,
which interacts with the API provided by the OpenStack
cloud controller. This API enables us to create, remove and
reboot user agents instances. In order to find and subse-
quently reboot locked up user agents, we regularly query
the MongoDB database if the last record of a user agent is
older than a certain threshold, e.g., 10 minutes.

3.2.7 Securing and Scaling the Deployment
3.2.7.1 Security: Since WebEye uses actual browser

engines to collect web traffic, the risk of compromise
through exploits has to be considered and appropriate mea-
sures of fortification have to be implemented in order to
protect the framework and the platform it is built upon.
The main attack vectors we need to protect against are
attacks against the internal network of the framework,
e.g. by Denial of Service (DoS) attacks launched in the
client browsers and infections of either framework-internal
machines or even external endpoints through executable
code. Information stealing attacks such as history sniffing
or cookie stealing are less relevant, as WebEye does not use
any secret login data or tokens.

WebEye limits the attack surface by deactivating any
code execution except JavaScript so that exploits over Sil-
verlight or ActiveX cannot be launched against the frame-
work. Further, user agents run in isolated unprivileged con-

Figure 2. OpenStack Network

tainers and have no means of interfering with the network,
memory, or file system of other user agents. Each user
agent is located in an isolated, virtualized subnet, which
offers no direct connection to the Internet and other local
components. The only allowed connection is the one with
the HTTP(s) squid proxy server. This is enforced by an
iptables firewall configuration on the squid machine that
drops every connection which is not addressed to a port of
the proxy server.

As the exposed components (browsers) are isolated in
an virtual environment, a potential exploitation should be
contained. The only allowed communication is with open
Internet. This could theoretically allow an attacker, who took
over an UserAgent, to attack a website using the UserAgent
as a proxy. This risk of collateral damage is mainly reme-
diated by terminating the user agents and starting again
from a fresh image, which is known to be benign, in regular
intervals.

3.2.7.2 Scalability: It is important to be able to dy-
namically control the number and type (e.g., user agents
with malware seeders) of user agents in the system. This
gives us a control over what kind of data and in which
quantity/speed it should be collected by the framework. To
achieve this, we bundle each component into a docker con-
tainer, which is then shipped to machines within a cluster.
Scaling the user agents is done by the user agent manage-
ment component of WebEye, which would invoke/remove
user agent instances. This allows us to dynamically deploy
different flavors of user agents (e.g., a Firefox browser with a
phishing focused seeder) in a simple manner. The scalability
is realized by utilizing Openstack’s interfaces and appro-
priate storage facilities. With this scalability functionality in
place, the remaining bottleneck is the hardware and/or the
available bandwidth.

4 DATASET EVALUATION

This section of the document presents an evaluation of
the traffic data, which was collected within 2 months of
crawling. The dataset was generated with user agents of
two types of browsers (Firefox and Chromium) and different
URL sources. For each type of browser one user agent for
benign, two user agents for phishing focused and five user
agents for malware focused samples were utilized.

7

Figure 3. Progress of malware collection over time.

Figure 4. Top 10 malware countries

In total, the crawlers created 43 million
request/response-pairs for later analysis. The unique
count in this work is always based on a SHA-1 hash of the
response body.

The figure above shows the number of classified mal-
ware (checked against our ground truth) collected during
the collection phase of WebEye.

This figure presents the top 10 countries hosting mal-
ware. The data about the location of the hosting server is
based on GeoIP.

The diagram above shows a Top 10 of the most encoun-
tered types of malware based on the labels delivered by
ClamAV.

4.1 Evaluating the label sources
The following statistics show the number of detections
within the database and primarily makes comparisons to a
malware ground truth to show the accuracy of an malware
detector. Due to the discontinuation of Wepawet, a Virustotal
scan with at least 10 alerts serves as our ground truth for
malware in this work.

4.1.1 Google Safebrowsing
• MALWARE: 104751 (unique) responses are stored

within the database, that were flagged as malware

Figure 5. Top 10 malware types (based on clamav)

by Google’s Safebrowsing Service. However, if com-
pared to the specified ground truth, the number dras-
tically diminishes to only 10373 requests. The num-
ber of flagged responses with no Virustotal alarms is
93015.

• UNWANTED SOFTWARE: 9737 responses were
flagged as unwanted software. Unwanted software
does not necessarily indicate actual malware in the
traditional sense. However, 306 out of those requests
were deemed malicious by Virustotal.

• SOCIAL ENGINEERING: 62697 responses were
flagged as websites, that attempt, e.g., phishing.
Since social engineering is not considered malware,
a Virustotal scan was not performed, except when
ClamAV raised an alert.

• POTENTIALLY HARMFUL APPLICATIONS: No
responses with this flag exists within the database.

• THREATTYPE UNSPECIFIED: No responses with
this flag exists within the database.

4.1.2 ClamAV
ClamAV flagged 21651 requests in our database as ma-
licious. Compared to our ground truth (at least 10 anti-
virus-engines raised an alert), 21306 samples are actually
malware. The delta consists of samples that have less than
10 detections.

ClamAV detected the following signatures within the
majority of the dataset:

• Js.Trojan.Agent.1553495: This signature was de-
tected in 14807 distinct files of the dataset.

• Js.Trojan.Obfus.633: 3859 files matched to this signa-
ture.

• Legacy.Trojan.Agent-1388596 concludes the Top 3
with 631 findings

4.1.3 Virustotal
All in all we were able to scan 24928 malware samples,
of which 22818 samples triggered at least 10 detections by
Virustotal’s antivirus-engines. The average detection count
over the whole collection period is 26 detection.

8

4.1.4 Content-Types
In terms of content-types, the malware dataset primarily
consists of the following types:

• HTML: The majority of the malicious dataset is rep-
resented by HTML files (21610), of which 21347 are
HTML files with embedded JavaScript.

• Octet-Streams (Binaries): The second largest content-
type falls far behind with a count of only 330 distinct
files.

• JavaScript: With 329 files, JavaScript is the third
largest party within the dataset.

The remaining samples are distributed over different
content-types, e.g., Android APKs, compressed files (rar,
gzip, zip), images (jpeg, bmp), flash and plain text.

5 EXEMPLARY HTML/JS-MALWARE DETECTION
WITH MACHINE LEARNING

As one of the main purposes of WebEye is to enable re-
searchers to develop and fine-tune ML-based detection algo-
rithms, we demonstrate how WebEye data sets can be used
for training ML algorithms. For the sake of demonstration
we choose a simple classic ML algorithm here, but in our
research we also covered the development of deep learning
approaches.

Because machine learning approaches in malware de-
tection (and deep learning especially) need large amount
of labeled samples to learn reasonably, WebEye enables
researchers to collect data sets large enough to employ those
algorithms for web user protection.

In our case out of a 500 GB data set with 43 million sam-
ples, about 20,000 were labeled as malicious which indicates
0.5‰ maliciousness ratio in the wild. At that ratio, existing
data sets of only a few hundred mega bytes do not contain
enough malicious samples to create reasonable training sets
from. With about 20,000 distinct malware samples however,
WebEye was able to generate a sufficiently large number
that allowed us to train a Random Forest classifier. Also,
WebEye allows to continuously update the data set to reflect
the current malware landscape and allow re-training the ML
systems to detect new threats. The separation and asyn-
chronous approach of the label collection process further
allows updating labels even after the samples were initially
collected. This allows for a posteriori improvement of the
labels quality, because it gives AV companies time to find
and identify new malware strains which can be considered
in the a posteriori labeling, while WebEye is working with
real-time traffic data.

As an example for any machine learning classifier to
train with our data set we chose the random forest classi-
fier [8] implementation of the Scikit-Learn [6] library. The
algorithm operates on the above-described HTML/JS fea-
tures that were extracted from the collected JavaScript or
HTML samples.

The first step in training the classifier was the creation
of the training and testing sets. For the training set of
malicious samples we divided the collected malware dataset
into approximately two halves (11861 training records vs.
10092 testing records). For training benign data, we took
the tenfold amount of samples, which did not raise an alert

from any of the oracles. In order to test the classifier’s
performance with benign data, we used a testing set of 10000
benign samples.

Due to the imbalanced amount of malicious and benign
samples, the classifier was trained with a 1:10 weighting.
The classifier operates with a maximum of 10 trees in the
forest, has no maximum depth limitation and uses the Gini
impurity measure.

As can be seen from the following tables, the classifier
correctly detects 0.99% of actual malware as such and thus
has a high true positive rate, but would need further opti-
mizations with respect to its false positive rate. Using data
sets generated by WebEye, ML engineers could not continue
to iteratively tune parameters of their algorithms to come up
with a precise malware detection solution.

Table 1
Confusion matrix of the random forest classifier.

- act. benign act. malware
pred. benign 9987 2091

pred. malware 13 8001

Table 2
Precision, recall and accuracy metrics for the malware class.

Class Malware
Precision 0.9983

Recall 0.7928
Accuracy 0.8952

Class Benign
Precision 0.8268

Recall 0.9987
Accuracy 0.8952

Table 3
Precision, recall and accuracy metrics for the benign class.

For further verification of the ML algorithms under
development, the WebEye setup can be switched from
collecting mode to enforcing mode. Rather than artificially
creating traffic, the framework will then operate as an ICAP
server classifying traffic using the ML algorithm under
development. This allows to immediately evaluate malware
detection solution against real traffic, while they are devel-
oped.

5.1 Changes of HTML/JavaScript Malware over Time
Extracting features from HTML and JavaScript documents
allows us to make certain statements about malware based
on these technologies. For example, with the extracted
HTML/JS features, it is possible to recognize the trends in
circulating malware. Aligned with the collection progress 6,
the most common features are (in terms of presence in the
collected malware samples):

5.1.0.1 Long Strings: A common characteristic
among JavaScript-Malware is the presence of long strings
(¿= 40 characters). Around 95.05 percent of the malicious
samples contain at least one long string. Whereas the benign
sample set features long strings in 54.91 percent of the
samples.

9

Figure 6. Average count of long strings within malicious samples

Figure 7. Average count of form strings within malicious samples.

5.1.0.2 Form Strings: Another common theme in
HTML-/JavaScript-Malware is the presence of form strings
within HTML-/JavaScript documents. Of all malware
samples, 94.33 percent used at least one form string. Benign
JavaScript and HTML contained form strings in 33.50
percent of all samples.

5.1.0.3 Iframes: Iframes are also heavily used in the
collected malware samples. 35.38 percent of the malicious
samples contained Iframes. As compared to the benign set,
where 18.56 percent contained Iframes.

Figure 8. Average count of Iframes within malicious samples.

6 CONCLUSION

In this report we motivated the need for the creation of
large-scale data sets of web traffic which are precisely clas-
sified as malicious and benign, reflect the actual surfing
behavior of users, and are free for research and product
development to with, i.e. do not affect the privacy of any
user. Our contribution to the research community is the
design, implementation, and evaluation of WebEye that au-
tonomously collects web traffic by simulating several users,
classifies and extends data according to augmentation fa-
cilities, and extracts relevant features for machine learning
training sets.

By a modular design and the use of standard interfaces
such as ICAP, each functional part of the framework can be
adopted to the specific needs of the user, such as the choice
of different interaction strategies or malware classifiers.
Further, by switching the framework from learning mode to
enforcement mode, it can immediately serve as a testbed of
malware detection solutions and thereby supports the test-
development cycle.

Scalability of the system has been one of the main design
criteria and was assessed in a two-months data collection
period during which more than 43 million request/response
pairs have been gathered and classified. The cloud-based
deployment on an OpenStack/MongoDB/Elasticsearch in-
frastructure supports full scalability of user agents, data
classification and storage and can thus be extended to any
desired scale. Analytics visualizations are based on the
Kibana tool and can thus be adopted to the user’s needs as
necessary. Attacks against the framework itself are limited
by strict isolation of user agents.

By applying our framework to train classic machine
learning algorithms, we demonstrate how it supports the
design of ML and deep learning approaches to detect ma-
licious web traffic. The main challenges we came across
in this research were the reliable labeling of sources to
pre-classify visited websites, which has been solved by a
combination of multiple classifiers, as well as the simulation
of user behavior which has been implemented by different
interaction strategies as part of the user agents.

As up to date, publicly available web data sets are scarce
and severely limited, we consider WebEye an important
contribution to the field, as it allows researchers to create
data sets of high quality and any desired size. As a starting
point, we generated a 500 GB web traffic data set including
a sufficiently large number of malicious samples to create
ML training sets from it.

ACKNOWLEDGMENTS

This work has been funded by the German Federal Ministry
of Education and Research (BMBF) through the project
BDSec – Big Data Security 01IS14009C.

REFERENCES

[1] Beef project website. http://beefproject.com/.
[2] Bugmenot website. http://bugmenot.com/.
[3] Microsoft malware classification challenge (big 2015). https://

www.kaggle.com/c/malware-classification/data.
[4] Mongodb documentation - gridfs. https://docs.mongodb.com/

manual/core/gridfs/.

http://beefproject.com/
http://bugmenot.com/
https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
https://docs.mongodb.com/manual/core/gridfs/
https://docs.mongodb.com/manual/core/gridfs/

10

[5] Phantomjs website. http://phantomjs.org/.
[6] Scikit learn website. https://scikit-learn.org/stable/.
[7] Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gas-

con, and Konrad Rieck. Drebin: Efficient and explainable detection
of android malware in your pocket. In 21th Annual Network and
Distributed System Security Symposium (NDSS), 2014.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct
2001.

[9] B. Zorn C. Seifert C. Curtsinger, B. Livshits. Zozzle: Low-overhead
mostly static javascript malware detection, 2010.

[10] G. Vigna C. Kruegel. D. Canali, M. Cova. Prophiler: A fast filter
for the large-scale detection of malicious web pages.

[11] Sebastian Garcia, Martin Grill, Honza Stiborek, and Alejandro
Zunino. An empirical comparison of botnet detection methods. In
Computers and Security Journal, volume 45, pages 100–123. Elsevier,
2014.

[12] Carmen Torrano Giménez, Alejandro Pérez Villegas, and Gonzalo
Álvarez Marañón. Http dataset csic 2010. http://www.isi.csic.es/
dataset/, 2010.

[13] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christo-
pher Kruegel, and Giovanni Vigna. Revolver: An automated
approach to the detection of evasive web-based malware. 2013.

[14] Nicolas Kiss, Jean-François Lalande, Mourad Leslous, and Valérie
Viet Triem Tong. Kharon dataset: Android malware under a
microscope. In Learning from Authoritative Security Experiment
Results, San Jose, United States, 2016. The USENIX Association.

[15] Wouter Joosen Christopher Kruegel Frank Piessens Giovanni Vi-
gna Nick Nikiforakis, Alexandros Kapravelos. Cookieless Mon-
ster: Exploring the Ecosystem of Web-based Device Fingerprint-
ing. 2013.

[16] Michael Spreitzenbarth, Florian Echtler, Thomas Schreck, Felix C.
Freling, and Johannes Hoffmann. Mobilesandbox: Looking deeper
into android applications. In 28th International ACM Symposium on
Applied Computing (SAC).

[17] Philipp Trinius, Carsten Willems, Thorsten Holz, and Konrad
Rieck. A malware instruction set for behavior-based analysis. In
Technical Report TR-2009-007, 2009.

http://phantomjs.org/
https://scikit-learn.org/stable/
http://www.isi.csic.es/dataset/
http://www.isi.csic.es/dataset/

11

APPENDIX

Table 4
Extracted Features

Feature Explanation
NumclearAttributes Number of clearAttributes being called
Filesize Length of the file
crypt Number of crypt string
NumWords Number of words
ishtml Is the document a valid HTML?
NumLongStrings Number of long strings (¿= 40 characters)
TotalEntropy Entropy of the file content
NumReassignmentOfSpecialObject Number of special objects being reassigned (e.g., this)
onerror Number of registered onerror events
isjs Is the document a valid JS-File?
NumActiveXObject Number of ActiveXObjects
MaxStringEntropy Entropy of all javascript strings
NumKeywords Number of javascript keywords
NumfireEvent Number of fireEvent function calls
NumreplaceNode Number of replaceNode function calls
NumBracketLookups Number of bracket lookups (e.g., this["eval"]
ShellcodeProbability Probability of shellcode being present in the document
AvgStringLength Average length of strings in the document
EntropyDensity Density of the calculated entropy
NumattachEvent Number of events being attached to DOM elements
containsjstags Number of <script>-tags
TotalStringEntropy Calculated entropy of all strings
onunload Number of onunload-events being used
script Number of script strings
NumHTMLNodes Number of nodes in a HTML document
MaxStrLen Length of the longest string
IP address Number of IP-address like patterns in the document
NumBracketCalls Number of function calls with bracket notation
NuminsertAdjacentElement Number of insertAdjacentElement function calls
NumNodes Number of nodes in the Javascript-AST
ishtmlwithjse4x Is the document a valid HTML document with embedded

JSE4X?
NumStrings Number of strings in the document
evil Number of evil strings
NumiframeString Number of iframe strings in the javascript AST
NumaddEventListener Number of addEventListener function calls
NumsetInterval Number of setInterval calls
scriptTagDataURLCount Number of javascripts loaded with DataURLs
htmlEventCount Number of all registered HTML events
AvgLinesize Average line size of the document
shell Number of shell strings
NumPackerFunctions Number of calls to a packer
parsingerror Does a parsing error exist?
ishtmlwithjs Is this a HTML with normal javascript?
onload Number of onload routines
NumsetTimeout Number of setTimeout calls
TotalStringLength Length of all strings combined
embed Number of embed strings
Numeval Number of eval strings
object Number of object strings
frame Number of frame strings
spray Number of spray strings
NumLongVarOrFunNames Number of variables or functions with long names
iframe Number of iframe strings
isjse4x Is this a JSE4X document?
NumdispatchEvent Number of dispatchEvent function calls
form Number of form strings
NumFunctionCalls Number of direct function calls
onbeforeload Number of onbeforeload events being used

	1 Introduction
	2 Related Work
	2.1 Collection and Analysis
	2.2 Zozzle

	3 Traffic Collection Framework
	3.1 Overall Concept/Architecture of WebEye
	3.2 Implementation and Setup
	3.2.1 Implementation: Capturing Component/Sensor
	3.2.2 Implementation: Automated User Agent
	3.2.3 Implementation: Data Augmentation Facilities
	3.2.4 Implementation: Malware Detection Facilities
	3.2.5 Implementation: Storage Component
	3.2.6 Implementation: User Agent Management
	3.2.7 Securing and Scaling the Deployment

	4 Dataset Evaluation
	4.1 Evaluating the label sources
	4.1.1 Google Safebrowsing
	4.1.2 ClamAV
	4.1.3 Virustotal
	4.1.4 Content-Types

	5 Exemplary HTML/JS-Malware Detection with Machine Learning
	5.1 Changes of HTML/JavaScript Malware over Time

	6 Conclusion
	References
	Appendix

