

Detecting BadBIOS, Evil Maids, Bootkits, and
Other Firmware Malware

SeaGL
October 6, 2017

Paul English, PreOS Security
Twitter: @penglish_preos
penglish@preossec.com

https://preossec.com/
personal blog of Lee Fisher (CTO):

https://firmwaresecurity.com/

Content licensed: CC by-SA 4.0
http://creativecommons.org/licenses/by-sa/4.0/

✓

https://preossec.com/
https://firmwaresecurity.com/
http://creativecommons.org/licenses/by-sa/4.0/

Agenda

– Technology: some system/peripheral firmware.

– Threats: types of and existing firmware-level
malware.

– Tools: open source (and a few freeware) firmware
defect/security analysis tools.

– Guidance: Introduce some basic advice for
protecting your firmware from attackers, mostly
based on NIST SP 800-147 lifecycle guidance.

About

● Me:System Administrator since 1998, added “manager” more
recently. Former board member for the League of Professional
System Administrators (LOPSA), Board Member for Seattle
Privacy Coalition, organizer for Seattle Techno Activism 3rd
Mondays

● Employer: PreOS Security is a firmware security startup that
focuses on defensive tools for enterprises. I am co-founder and
CEO.

● Presentation: discusses existing open source (and a few
freeware) firmware diagnostic/security tools, combined with some
existing NIST guidance. No new security exploits or
vulnerabilities or research.

Scope

● Using ‘System Firmware’ aka ‘Platform Firmware’
(BIOS, UEFI, ACPI, etc.) definition of firmware, not
embedded OS firmware (eLinux, Windows IoT,
Android, QNX, etc.).

● Focusing on Intel x64 UEFI-based systems. Though
much applies to x86, AArch32, AArch64 UEFI
systems, and some BIOS systems.

● Mostly focusing on UEFI-style systems, not coreboot
or U-Boot or other boot loader technologies.

Why are we talking about this?

● Industry (standards bodies, governments):
– NIST SP 800-(147/147b/155/193) are guidance not policy, few follow it

– No mandatory policy explicitly requires addressing firmware security

● Vendors (OEMs, ODMs):
– Most still shipping insecure systems

– None providing golden image hashes

– Insufficient changelog documentation

– Some never update firmware after initial release

● Consumers (you):
– Most ignorant of the problem

– Not spending time to learn to solve problem

– Continuing to purchase insecure systems from vendors

NEXT MODULE

● Tech
● Threats
● Tools
● Guidance

Application
software
 softwareOperating system
software (and
IHV drivers)

Management
and SEE/TEE
firmware

Hardware

cpythonvim

Windows

SMASHIPMI

firefox

Linux

SMM Redfish

CPU

TPM

Intel AMT

BootGuard

DASH

Android NanoBSD

fTPM ...

Intel ME

OP-TEE ARM-TF

System
firmware

Peripheral
firmware

BIOSUEFIACPI

USBPCIe

coreboot U-Boot

...

...

...

...

...

GPU

mame

MacOSX

TrustZone

AMD PSP

Rings of Protection

● Early Intel processor security model (MS-DOS-era,
aka no security):
– Ring 3 (outermost): user mode, apps

– Rings 2-1: often not used.

– Ring 0 (innermost): kernel mode, drivers/OS kernel

● Simplistic model, 3 (aka user space) and 0 (aka kernel
space), ignoring nuances of physical and virtual
firmware and silicon levels.

● Invisible Things Lab (ITL) and others have proposed
adding new negative rings – below ring 0 – to clarify
this (next slide).

Negative (Subzero) Rings
● Ring -1: VM, hypervisor/CPU (Intel VMX, AMD SVM)

● Ring -2: Intel SMBIOS, SMM

● Ring -3: Firmware (BIOS, UEFI, coreboot, U-Boot, ...)

● Ring -4: hardware, silicon exploits

● Firmware (-3) unites all of these rings: it is the gateway
to access SMM (-2) and HW (-4), and also works on
virtualized systems (-1), and can be accessed (and
controlled) by OSes/drivers (0) and apps (3).

● We will be spending most of our time talking about ring
-3, focusing on UEFI-flavored firmware…

Intel Systems Mangement Mode

● Systems Management Mode (SMM)
● AKA “Ring -2”
● Intel-based technology, mode of CPU other than

Real or Protect Mode, where attackers prefer to be
operating in. Basically, the first attempts of a
TEE/SEE for Intel x86 systems.

● UEFI recently updated the Platform Initialization
(PI) spec, abstracts both Intel SMM and ARM
TrustZone as “MM”, Management Mode.

Image credit

● Image from next slide comes from the Blackhat-
US-2017 presentation: "Firmware is the new
Black – Analyzing Past 3 years of BIOS/UEFI
Security Vulnerabilities", by Bruce Monroe &
Rodrigo Rubira Branco & Vincent Zimmer, Intel
Corp.
https://github.com/rrbranco/BlackHat2017/

Modern x64 UEFI system arch

UEFI Services

● UEFI Boot Services
– used by OS loader to transition from FW to OS

kernel (or boot manager, a pre-OS UEFI app)

– Only used during init, they're not available later.

● UEFI RunTime Services
– Similar to BIOS interrupts like 10h (video) and 13h

(disk), UEFI has services that the OS uses.

– virtual memory, time, variables, console i/o, reset,
capsule, memory, event/timer, protocol, image

Image source: UEFI PI spec

Secure Boot
● Secure Boot is an optional build-time feature of

UEFI 2.x using multiple sets of keys to try and
secure the firmware from malware.

● UEFI Variables Secure Boot Databases:
– Platform Key (PK)

– Key Exchange Key Database (KEK)

– Secure Boot Signature Database (db)

– Secure Boot Blacklist Signature Database (dbx)

– Secure Boot Timestamp Signature Database (dbt)

– Secure Boot Authorized Recovery Signature
Database (dbr)

More secure boot flavors
● Besides default (insecure) boot modes of past,

more secure boot modes are being used, to help
detect attacks:
– UEFI Secure Boot

– TCG Measured Boot (uses TPM)
– Trusted Boot (uses Intel TXT)

● Related technologies:
– coreboot Verified Boot (Android, ChromeOS)

– U-Boot Verified Boot

Image credit

● Image from next slide comes from the Blackhat-
US-2017 presentation: "Firmware is the new
Black – Analyzing Past 3 years of BIOS/UEFI
Security Vulnerabilities", by Bruce Monroe &
Rodrigo Rubira Branco & Vincent Zimmer, Intel
Corp.
https://github.com/rrbranco/BlackHat2017/

Intel/UEFI boot sequence

ACPI

● Advanced Configuration and Power Interface
● Successor to ISAPnP, APM and MP.
● ACPI used by both BIOS and UEFI. Initially only

on Intel, now also on ARM systems.
● Dozens of ACPI ‘tables’ are defined.
● ACPI has an AML (ACPI Machine Language) and

bytecode which the firmware and OS has to run.
● The UEFI Forum owns the ACPI specifications.

Image source: ACPI spec

PCIe

● PCIe is one of the main peripheral busses these days.
● In addition to main system firmware ROM, each PCIe

device on the system can have option/expansion ROMs
on their flash, often BIOS-based code as well as UEFI-
based drivers, that enhances the platform firmware to
support the PCIe device.

● NVMe and Thunderbolt are PCIe-based.
● See CHIPSEC_util’s PCI command
● Recent Apple Mac EFI firmware has new boot key to press

to disable loading of PCIe device option ROMs.

Other: USB, Hard disks, Monitors?

● “BadUSB”
https://github.com/brandonlw/Psychson

● Hard disks (and SSDs): on-board controller.
Sprites: http://spritesmods.com/?art=hddhack

● Monitors! - MonitorDarkly
https://github.com/redballoonshenanigans/monitor
darkly

NEXT MODULE

● Tech

● Threats
● Tools
● Guidance

https://github.com/brandonlw/Psychson
http://spritesmods.com/?art=hddhack
https://github.com/redballoonshenanigans/monitordarkly
https://github.com/redballoonshenanigans/monitordarkly

Why Threaten Firmware?

● Stealth
– As current tools & practices do not address firmware,

compromises can remain undetected

● Persistence
– Even if detected, issues can be more difficult to fix at the

firmware level. Nobody wants to throw away hardware.

● Full Access
– “Ring 0” or even “Negative Ring” access operate below

most protection. Some protection relies on firmware
features!

Evil Maid attack

● The “Evil Maid” attack is perhaps the best-known firmware
attack.

● Results from physical access to hardware, game over.
● Evil Maids attack unattended systems, like the laptop left

at a hotel while out at dinner, handed to TSA, insecure
server room,...

● Attacks vary, from plugging in rogue
PCIe/USB/Thunderbolt peripheral, attaching SPI/JTAG
device, to complex de-chipping.

● Never leave unsecure computers unattended.

Supply Chain Verification

● New hardware is bad enough
– Vendors do not provide golden image hashes for verification

– Most vendors do not provide sufficient documentation for firmware
features, or for updates, to distinguish changes in ROM that are vendor
updates -vs- attacker malware.

– Shipped hardware may be be intercepted by government agencies, or
criminals in shipping companies; interdictions of shipped hardware,
infected with malware.

● Grey market hardware is much worse
– Basically the same problem as interdictions. Do you know how to

factory-reset the firmware of all the used hardware you’ve acquired?

● Industry has no mechanism to verify silicon for threats.

Physical and network security

● Data centers and 'server rooms' should have good physical security.
● Desktops left at work are often accessible by evil maids in night shift

cleaning staff.
● Mobile devices have roaming network security issues.
● Mobile devices left in hotels subject to evil maid attacks.
● New airline travel (“Travel 2.0”) restrictions enables evil maid attack

for phones/laptops/etc of more and more travelers.
● Firmware management OOB network management must be

isolated, encrypted, and authenticated (Intel AMT, Redfish, IPMI,
iLO, …). Previously Ethernet-centric, now WiFi-based OOB
solutions make this even harder to isolate.

Firmware Updates and OS attacks

● With UEFI, firmware updates are more standardized than
with BIOS, and are now more easily called by user-mode
applications. Recent OS platform integration has firmware
updates included in OS updates (eg: Windows Update).

● If vendor has not locked down their firmware update
mechanism to signed code and signed payloads, attacker
can pivot off an OS root/admin exploit to embed bootkit into
firmware.

● There are lots of OS/app-level security tools and rules out
today: do any watch for (and selectively disallow) firmware-
updates?

Existing UEFI malware

● The CHIPSEC project maintains a blacklist for UEFI
malware, currently has 3 entries:
– Hacking Team’s Vector-EDK

– @cr4sh’s ThinkPwn

– CIA Mac EFI malware

● A few security researchers have some POCs on Github.
● Old leaked goverment malware:

– NSA (BIOS, not UEFI): DeityBounce, BananaBallot, JetPlow

– CIA (Mac EFI): DarkMatter, DerStark, QuarkMatter, …

UEFI Secure Boot keys

● UEFI uses PKI for Secure Boot and code
signing. UEFI does not have CRL/OSCP for
checking for bad keys.

● The UEFI Forum maintains a list of bad keys
used by UEFI Secure Boot. There are a few
dozen entries in current DBX.

● Does your vendor provide tools to update the
DBX? :-)

Hardware attacks

● Hardware attacks:
– USB, Hak5 USB Rubber Ducky, etc.

– PCIe, PCILeech-based, DMA/other attacks by
‘rogue hardware’ (inexpensive COTS dev board)

– Thunderbolt

– Rowhammer, memory attacks

Open Source == shared
vulnerabilites

● OEM vendors share a common core UEFI
codebase (tianocore.org).

● Next slide, image source:
● https://twitter.com/XenoKovah/status/62348324489

0189824
● “Dear firmware makers: ALL UEFI-RELATED

FIRMWARE LOOKS THE SAME TO ATTACKERS!
YOUR SECURITY THROUGH OBSCURITY IS
GONE!”

Image source:
https://twitter.com/XenoKovah/status/623483244890189824

Firmware Bug Classes

● 1) Inconsistent power-transition checks
● 2) Race Condition
● 3) Trusting input
● 4) Measurement failures
● 5) Platform capability not properly configured
● 6) Security of meaningful assets exposed to untrusted entities
● 7) Hardware Misbehavior

● Classes defined in the Blackhat-US-2017 presentation: "Firmware is the new
Black – Analyzing Past 3 years of BIOS/UEFI Security Vulnerabilities", by
Bruce Monroe & Rodrigo Rubira Branco & Vincent Zimmer, Intel Corp.
https://github.com/rrbranco/BlackHat2017/

NEXT MODULE

● Threats
● Tech

● Tools
● Guidance

Tool Scope

● These tools, as with presentation scope, are mostly
focusing on UEFI and ACPI.

● Tools not covered: Intel ME, Intel AMT, IPMI, Redfish,
USB, microcode, etc. Tool coverage for these varies!

Two kinds of tool usages for firmware:
– Live: testing against a live running system

– Offline: testing a rom.bin or other file (NVRAM UEFI
variables, ACPI tables, etc.), earlier generated by live
tools.

Core Live Tools by OS

● Linux: CHIPSEC, acpidump, FWTS, FlashROM, Google
Pawn, ls(hw,pci,usb), ...

● macOS: CHIPSEC, acpidump, Apple eficheck[1],
DarwinDumper (FlashROM), ...

● Windows: CHIPSEC, acpidump, WinFlashROM,
RWEverything[1], ...

● UEFI Shell: CHIPSEC, acpidump (2), multiple shell commands,
RU.efi[1], many built-in shell commands, ...

● FreeBSD: FlashROM, acpidump

[1] closed-source freeware, other tools are open source.

Core Offline Tools

● CHIPSEC
● ACPICA (ACPI trade group) tools (acpidump,

etc.)
● FWTS
● UEFI Firmware Parser
● UEFITool
● UEFIDump

CHIPSEC

● https://github.com/chipsec/chipsec
● The McAfee (formerly Intel) CHIPSEC Project is a framework for analyzing the

security of Intel x86 and x64 systems including hardware, system firmware
(BIOS/UEFI), and platform components.

● CHIPSEC does both online analysis of live systems – bare metal and multiple
virtualized targets – as well as offline analysis of system images. It includes a
security test harness with multiple security modules. It can be run on Windows,
Linux, Mac OS X and UEFI shell.

● CHIPSEC_main is a set of security tests, roughly one module per public
vulnerability. CHIPSEC_util is a collection of tools – including fuzzers – to explore a
system, eg. to dump rom.bin via SPI. Main and Util share a common “HAL” driver, a
native OS kernel driver, for accessing various low level interfaces, and forensic
capabilities. The Python-based tool also includes a library that other tools can use.

● Attendees: grab a CHIPSEC quick reference sheet before you leave!

ACPIdump

● https://www.acpica.org/source
● The ACPI Component Architecture (ACPICA) project provides

an operating system (OS)-independent reference
implementation of ACPI. The complexity of the ACPI
specification leads to a lengthy and difficult implementation in
operating system software. The primary purpose of ACPICA is
to simplify ACPI implementations for OSVs by providing major
portions of an ACPI implementation in OS-independent ACPI
modules that can be integrated into any OS.

● ACPICA includes a handful of ACPI tools, ACPIDump, ACPI
Extract, etc.

FWTS (FirmWare Test Suite)

● https://wiki.ubuntu.com/FirmwareTestSuite/Reference
● Firmware Test Suite (FWTS) comprises of over fifty tests that

are designed to exercise and test different aspects of a
machine's firmware.The tools read UEFI, BIOS, ACPI, IPMI
and other platform firmware. FWTS was created by Canonical
to help test systems, and works on Ubuntu, and other Linux
systems but not BSD or Windows. FWTS has a Linux kernel
driver to test UEFI Runtime Services. FWTS has both a
command line and a CURSES UI.

● FWTS also has a liveboot Linux distribution called FWTS-live
which can be used to run the tests, using the CURSES UI.

FlashROM

● https://www.flashrom.org/Flashrom
● https://github.com/pinczakko/winflashrom
● flashrom is an open source utility for identifying, reading,

writing, verifying and erasing flash chips. It is designed
to flash BIOS/EFI/coreboot/firmware/optionROM images
on mainboards, network/graphics/storage controller
cards, and various other programmer devices. It
supports parallel, LPC, FWH and SPI flash interfaces
and various chip packages. It works on most Unix-like
systems, and there is a Windows port.

https://github.com/chipsec/chipsec

Apple eficheck

● https://apple.com/
● Recent versions of Apple macOS High Sierra

have a new utility called ‘eficheck’. It can dump
your system rom into a file (eg, a rom.bin) as well
as perform some security analysis, including
performing weekly scans of the rom.

● If there’s a problem with firmware, eficheck can
opt-into uploading the image to apple.com for
them to analyze.

UEFITool (and UEFIDump)

● https://github.com/LongSoft/UEFITool
● UEFITool is a powerful cross-platform C++/Qt program for parsing,

extracting and modifying UEFI firmware images. It supports parsing of
full BIOS images starting with the flash descriptor or any binary files
containing UEFI volumes.

● UEFITool is a Qt GUI tool, but the project also includes a few Qt-free C+
+ command line tools, UEFIDump, UEFIExtract, and UEFIPatch. The
main parsing engine and most of the command line tools are not Qt-
dependent. (UEFITools' 'UEFIDump' is like a non-GUI version of
UEFITool, and is different from FWTS's 'uefidump'.)

● For an example of using UEFITool, look at Intel Security's Advanced
Threat Research team's blog post with analysis of the Hacking Team's
UEFI malware, they use CHIPSEC and UEFITool to analyze it.

https://www.acpica.org/source

UEFI Firmware Parser

● https://github.com/theopolis/uefi-firmware-parser
● UEFI Firmware Parser is a Python module and set of scripts

for parsing, extracting, and recreating UEFI firmware volumes.
● This includes parsing modules for BIOS, OptionROM, Intel ME

and other formats too. It supports: UEFI Firmware Volumes,
Capsules, FileSystems, Files, Sections parsing, Intel PCH
Flash Descriptors, Intel ME modules parsing (ME, TXE, etc),
Dell PFS (HDR) updates parsing, Tiano/EFI, and native LZMA
(7z) [de]compression, Complete UEFI Firmware volume object
hierarchy display, Firmware descriptor [re]generation using the
parsed input volumes, and Firmware File Section injection.

https://wiki.ubuntu.com/FirmwareTestSuite/Reference

DarwinDumper

● https://bitbucket.org/blackosx/darwindumper
● DarwinDumper is collection of open source tools to dump Apple

Mac OS X system information to aid troubleshooting. It dumps
ACPI tables, DMI, EFI memory, EFI variables, SMC keys, system
BIOS, etc. It has a privacy mode which omits some serial
numbers and machine-unique data from the resulting report.

● Tools include: bdmesg, cmosDumperForOsx, dmidecode,
dumpACPI, edid-decode, fdisk440, FirmwareMemoryMap,
flashrom, getcodecid, genconfig, getdump, gfxutil, iasl, ioregwv,
lzma, nvram, oclinfo, lspci, RadeonDump, radeon_bios_decode,
smbios-reader, SMC_util, VoodooHDA.kext, x86info.

https://www.flashrom.org/Flashrom
https://github.com/pinczakko/winflashrom

EFIgy

● https://efigy.io/
● Duo Security just released EFIgy yesterday!
● EFIgy checks the EFI firmware of Apple Mac

systems.

UEFI Shell-based tools

● The UEFI Shell has nearly a hundred commands, many powerful
diagnostics for low-level firmware/hardware information. No other OS
in your way, either.
– Fairly easy to build a USB thumb drive to boot a system into the UEFI Shell,

instead of it’s default OS.

● Sample of some of built-in commands:
– Bcfg, Dblk, Devices, DevTree, DH, Disconnect, DMem, DmpStore, DP,

Drivers, DrvCfg, DrvDiag, EfiCompress, EfiDecompress, GetMTC, IfConfig,
Load, LoadPCIROM, Map, MemMap, MM, OpenInfo, Parse, PCI, Reconnect,
Reset, SMBIOSView, ..

● Samples of some external third-party commands:
– CPython 2.7x, CHIPSEC, acpidump, FPMurphy’s UEFI Utilities, UefiToolPkg,

Vim, Intel EFI Disk Utilities, ...

https://apple.com/

Read and Write Everything

● http://rweverything.com/
● RW, aka RWEverything (Read and Write Everything) is a GUI

Windows-based firmware utility that enables access to almost all
the computer hardware, including PCI (PCI Express), PCI
Index/Data, Memory, Memory Index/Data, I/O Space, I/O
Index/Data, Super I/O, Clock Generator, DIMM SPD, SMBus
Device, CPU MSR Registers, ATA/ATAPI Identify Data, Disk Read
Write, ACPI Tables Dump (include AML decode), Embedded
Controller, USB Information, SMBIOS Structures, PCI Option
ROMs, MP Configuration Table, E820, EDID and Remote Access.

● It ships with Win32 or Win64 binaries, and is freeware, not open
source.

https://github.com/LongSoft/UEFITool

Read Universal utility

● http://ruexe.blogspot.tw/
● The Read Universal utility is a multi-function tool

for BIOS debugging. It includes tools that
provides direct access to almost all resources
like memory, IO space, PCI, SMBIOS data, UEFI
variables and so on.

● The tool is freeware -- not open source - and is
written by a UEFI Engineer at AMI. It ships as
ru.exe and ru.efi binaries.

Linux UEFI Validation (LUV)

● https://01.org/linux-uefi-validation
● Aka: LUV, LUVos, luvOS, LUV-live, ‘the LUV shack’.
● LUV is a UEFI test-centric Linux distribution from Intel that helps test UEFI

implementation issues for Linux. It bundles multiple external tests (FWTS,
CHIPSEC, BITS, etc.), runs them all in batch-mode, saves results for later
review. LUV is based on Yocto Linux, and works on Intel x86 and x64 systems.

● LUV provides integrated testing, such as the interaction between the
bootloader, Linux kernel and firmware, that require cooperation across multiple
runtime phases. Enables LUV to test UEFI capsule updates work correctly
across a reboot.

● LUV-live is a LUV-based liveboot distribution. It boots via a thumb
drive or via PXE, and runs in batch mode and gathers up test results.

https://bitbucket.org/blackosx/darwindumper

Linux UEFI Validation (LUV)

● https://01.org/linux-uefi-validation
● Aka: LUV, LUVos, luvOS, LUV-live, ‘the LUV shack’.
● LUV is a UEFI test-centric Linux distribution from Intel that helps test UEFI

implementation issues for Linux. It bundles multiple external tests (FWTS,
CHIPSEC, BITS, etc.), runs them all in batch-mode, saves results for later
review. LUV is based on Yocto Linux, and works on Intel x86 and x64 systems.

● LUV provides integrated testing, such as the interaction between the
bootloader, Linux kernel and firmware, that require cooperation across multiple
runtime phases. Enables LUV to test UEFI capsule updates work correctly
across a reboot.

● LUV-live is a LUV-based liveboot distribution. It boots via a thumb
drive or via PXE, and runs in batch mode and gathers up test results.

Vendor-Specific Tools

● Many OEMs/IBVs add diagnostic tools.
– OEMs provides tools for business-class systems, and rely on IBV

for tools for ODM-based consumer-class systems.

● Examples:
– Multiple (HP, Dell, Cisco, etc.) have UEFI diagnostic tools on their

boot menus.

– Microsoft’s Surface has optional enterprise-only firmware, with
security features unavailable in consumer firmware.

– Lenovo’s TPM reset CD and UEFI diagnostic CD.

– Apple Store’s Geniuses have access to a tool that can reset your
firmware password.

PreOS vaporware announcement

● PreOS Security is creating a new open source firmware tool
for SysAdmins, SRE, DFIR, Blue Teams, and advanced users.

● It gathers data about firmware (UEFI, ACPI etc.) via invoking
multiple firmware tools, starting with CHIPSEC and FWTS,
more tools planned.

● It targets Linux on Intel x64 UEFI systems. More arch/OS
targets planned, x86, AArch64, Windows, macOS, more Linux
distros.

● For announcement of availability, firmware security tips, sign
up at:

https://preossec.com/newsletter

http://rweverything.com/

NEXT MODULE

● Threats
● Tech
● Tools

● Guidance

http://ruexe.blogspot.tw/

Guidance

● Next few slides have some advice taken from existing
sources

● 1) CHIPSEC team interviewed for an article in
DarkReading.com, with 5 basic tips for firmware
security.

● 2) NIST has 3 documents with ‘secure BIOS’ advice, for
enterprises, including a secure BIOS platform lifecycle.

● I’ve added some of the existing tool suggestions for the
various phases of the NIST secure BIOS platform
lifecycle. Don’t blame NIST for those suggestions! :-)

DarkReading’s 5 tips

● Credit to:
http://www.darkreading.com/iot/5-tips-for-prote
cting-firmware-from-attacks/d/d-id/1325604
1) Know that the threat is real.

2) Practice security basics: Least privilege,
Physical access controls, Disable unnecessary
services, firewalls, AntiVirus, Incident Response
plans and drills, etc.

Dark Reading (cont’d)

3) Benchmark for vulnerabilities: write protection,
secure boot, blacklist, cert revocation

4) Make a firmware golden image, check
periodically, particularly after an incident

1) Also do this for test results (eg: CHIPSEC for UEFI)

2) When tests are updated, re-run

5) Think broadly about firmware: presence in
many aspects of a system, many types of
hardware, automated vs. manual updates.

NIST secure BIOS guidance

● 2011: SP 800-147: BIOS Protection Guidelines
– Protects systems from unauthorized BIOS modification by defining a secure,

non-bypassable authenticated update mechanism.

● 2011: SP 800-155: BIOS Integrity Measurement Guidelines (Draft)
– Outlines a framework for a secure BIOS integrity measurement and reporting

chain for client systems, to detect unauthorized modification of System BIOS and
configuration using secure measurement and reporting mechanisms.

● 2014: SP 800-147B: BIOS Protection Guidelines for Servers
– Extends SP800-147 system model, from simple PC to more sophisticated

servers with BMC and OOB update mechanisms.

● 2017: SP 800-193: Platform Firmware Resiliency Guidelines (Draft)

– Provides technical guidelines and recommendations supporting resiliency of
platform firmware and data against potentially destructive attacks.

NIST SP 800-147 Platform Lifecycle

● Guidance is both for device vendors, as well as
enterprise sysadmins – but YOU are the (only) sysadmin
for your own personal system(s) usually.

● 5 States of firmware lifecycle, covering acquisition to
disposition:
– Provisioning

– Platform Deployment

– Operations and Maintenance

– Recovery

– Disposition

Pre-Provisioning: Before Purchase
● Vendor research

– RFP, request CHIPSEC logs

– Don’t buy the system if it fails CHIPSEC’s security tests

– Goal is to avoid purchasing insecure systems.

● Set company purchase policy about what HW/FW features must
be in new models.

– Require new systems to have features listed in NIST
147/155/etc to provide firmware security

– Eg, All new Intel UEFI systems must pass all current relevant
CHIPSEC security tests.

– Eg, UEFI instead of BIOS, must have TPM v2, etc.

Provisioning: Pre/+Deployment
● Test CHIPSEC, confirm logs did pass, if not return the system!
● Follow your policy:

– Using/disabling silicon security tech (VT, TPM, TXT, TZ, TEE, Intel-ME, …)
– Using/disabling ports/hardware (WiFi, USB, Thunderbolt, BT, Ethernet, …)
– Smartcard authentication for boot/network access Secure/Trusted/Measured/Verified Boot
– Clarify system boot order
– WakeOn<N> features
– No unencrypted storage (Self-Encrypting Drives, SEDs, NVMe + TPM)
– Firmware/BIOS password
– Selecting UEFI over CSM/LegacyBoot
– Limit ‘pre-OS’ software installed (UEFI drivers, services, apps, UEFI shell scripts)
– Check ESP, look for startup.nsh (unlike autoexec.bat, there can be N of these, in any directory, if in UEFI

Shell's %PATH%)
– Look for *.efi, look on OEM/IHV flash for OpROMs and UEFI drivers
– Control/disable net access (IPMI, PXE, HTTP Boot, SMASH and DASH, Redfish, …)

● Enable Secure Boot!
– Enable signed code: All vendor & 3rd party code should be signed!

– Some sites may wish to use their own keys, instead of default UEFI CA

– Ensure DBX file is up to date

● Maintain “golden” image for each platform, all firmwares and state
– Compare golden images, ACPI tables, UEFI variables, compare image with vendor-supplied image or hash, save archive

– Create and maintain configuration baseline

– Maintain a copy of the RTU, if applicable

– Register endpoint identity and BIOS integrity information in system inventory

http://www.darkreading.com/iot/5-tips-for-protecting-firmware-from-attacks/d/d-id/1325604
http://www.darkreading.com/iot/5-tips-for-protecting-firmware-from-attacks/d/d-id/1325604

 Operations: Maintenance &
Monitoring

● Update! OS standardized and NIST SP 800-147 authenticated if possible eg:

– Windows via Windows Update (from Win 7 onward)

– Linux via fwupd

– Mac via App Store updates

– Vendor specific (eg: Eve’s USB ethernet adapter firmware update v.0.4 →
v0.5)

● Measure!after firmware updates – dump images, ACPI tables, UEFI variables.

● Periodic/Regular firmware scans: (eg: re-run CHIPSEC, dump ACPI tables,
UEFI vars)

– After updates

– When new tests are available

● Network – isolate, authenticate, encrypt and monitor all firmware network traffic

– UEFI HTTP[S] Boot, IPsec, iSCSI, PXE, AMT, DASH, SMASH, IPMI, iLO,
etc.

Recovery

● After a security incident...or suspected incident including BUT NOT
LIMITED TO:
– Loss of physical control of machine

– Known Evil Maid Attack

– OS level compromise

● Take full validation steps:
– regenerate image

– rerun tests

– compare image, ACPI tables, UEFI variables & test results with originals,
looking for signs of infection. eg,SPI protections were enabled, now
disabled

– Use forensic tools eg: chipsec_util.py to parse SPI image

Disposition

● Reset BIOS/UEFI configuration to defaults

● Remove passwords and organization-specific cryptographic keys

● Remove organization-specific customizations

● Reset any TPM secrets

● Sanitize media

● UEFI has user data, User ID and Smartcard drivers, for PXE remote boot and
IPsec use (CHAP auth used somewhere).

● Be clear on what user credentials are stored in your firmware, before you recycle
it!

● Ask your vendor how to purge PII from their firmware product, for safe disposition.

– Eg, Lenovo has a CD that resets the TPM data.

Summary

● Understand the firmware security problem, start
with NIST SP 800-147’s lifecycle.

● Learn to use the tools to help you protect your
firmware, start with CHIPSEC.

● PreOS Security has an upcoming ebook that
covers this topic.

● PreOS Security has an upcoming firmware test
tool to help you diagnose your firmware.

Credits

● Thanks to my business partner & CTO of
PreOS Security, Lee Fisher for developing this
talk.

● Thanks to many people on the firmware-
security list on Twitter, the edk2-devel mailing
list, from the CHIPSEC and FWTS projects for
answering questions. Thanks to many other
security researchers for their tools and firmware
research.

Questions?

● Questions?
● Comments?
● Thanks for attending!
● Free e-book, quarterly newsletter, software announcements:

https://preossec.com/newsletter
● Paul English

penglish@preossec.com

@penglish_preos

https://preossec.com
https://firmwaresecurity.com (personal blog of Lee Fisher, CTO of
PreOS Security)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

